Обобщение по теме «Теорема Пифагора».
план-конспект урока по геометрии по теме
Цель урока-обобщения по математике: Обобщить и систематизировать знания учащихся по теме, показать исторические истоки теоремы, учить учащихся применять полученные знания к решению прикладных задач, учить воспринимать материал в целостной системе различных предметов, воспитывать познавательный интерес к изучению геометрии.
Скачать:
Вложение | Размер |
---|---|
razrabotka_uroka.doc | 38.5 КБ |
Предварительный просмотр:
Разработка урока - обобщения.
Тема урока-обобщения по математике: Обобщение по теме «Теорема Пифагора».
Цель урока-обобщения по математике: Обобщить и систематизировать знания учащихся по теме, показать исторические истоки теоремы, учить учащихся применять полученные знания к решению прикладных задач, учить воспринимать материал в целостной системе различных предметов, воспитывать познавательный интерес к изучению геометрии.
Ход урока обобщения по математике:
1. Актуализация опорных знаний учащихся.
Особое место в геометрии, особую роль играет прямоугольный треугольник, теорема Пифагора, соотношение между сторонами и углами в прямоугольном треугольнике. На протяжении нескольких уроков мы изучали с вами этот материал и сегодня наша цель обобщить полученные знания. К вопросу обобщения мы подойдём многосторонне: как историки, лирики, теоретики и как практики. Запишите план урока.
1. Исторические истоки теоремы «Сутра».
2. Слово лирикам.
3. 100 доказательств теоремы Пифагора Бхаскара.
4. Слово теоретикам.
5. Практическое применение к решению задач.
6. прикладные задачи.
2. Работа учащихся по обобщению и систематизации материала.
Слово историкам в лице Пермяковой Валерии.
О том, что треугольник со сторонами 3, 4 и 5 есть прямоугольный знали за 2000 лет до н.э. египтяне, которые, вероятно, пользовались этим соотношением для построения прямых углов при сооружении зданий.
В Китае предложения о квадрате гипотенузы было известно, по крайней мере, за 500 лет до Пифагора. Эта теорема была известна и в древней Индии. Об этом свидетельствуют следующие предложения, содержащиеся в «Сутрах»:
- квадрат диагонали прямоугольника равен сумме квадратов его большей и меньшей сторон;
- квадрат на диагонали квадрата в 2 раза больше самого квадрата.
Учитель математики: Теорема Пифагора издавна применялась в разных областях науки и техники, в практической жизни. О ней писали в своих произведениях писатели Плутарх, инженер Витрувий, греческий учёный Диоген, математик Прокл. Не всякое математическое положение удостаивается такого внимания поэтов и писателей.
Немецкий писатель-романист Шамиссе, путешествуя на русском корабле «Рюрик» в 19 веке, написал следующие стихи:
Слово лирикам:
Пребудет вечной истина, как скоро
Её познает слабый человек!
И ныне теорема Пифагора
Верна, как и в её далёкий век.
Обильно было жертвоприношенье
Богам от Пифагора. Сто быков
Он отдал на закланье и сожженье
За света луч, сошедший с облаков
Поэтому всегда с тех самых пор
Чуть истина рождается на свет,
Быки ревут, её почуя, свету вслед,
Они не в силах свету помешать,
А могут лишь, закрыв глаза, дрожать
От страха, что вселил в них Пифагор.
Учитель математики: Доказательство теоремы Пифагора считалось в кругах учащихся средних веков очень трудным и называлось иногда «ослиным мостом» или «бегством убогих», т.е. некоторые слабые ученики бежали от геометрии, не пытаясь понять, а зазубривая доказательство. «Ослиный мост» - непроходимый мост. А посему возникали, своего рода карикатуры, сопровождающие чертежи к доказательству теоремы (рисунки-карикатуры на доске).
В настоящее время известно более ста доказательств знаменитой теоремы.
Слово теоретикам в лице Трунова Сергея. Он познакомит нас с одним из доказательств теоремы Пифагора индийским математиком Бхаскара (1114 – 1185 гг.). Во время того, как Трунов готовится, фронтальный опрос по правилам:
- Что называется синусом, косинусом, тангенсом и котангенсом острого угла в прямоугольном треугольнике?
- Как найти гипотенузу, пользуясь теоремой Пифагора?
- Как найти катет, пользуясь теоремой Пифагора?
- Как найти катет и гипотенузу, пользуясь соотношением в прямоугольном треугольнике?
- Найти неизвестные элементы треугольника.
Самостоятельная работа по индивидуальным карточкам.
А теперь слово практикам в лице каждого из вас (устное и письменное решение задач, разбор прикладных задач – домашнего задания).
3. Итог урока - обобщения по математике.
Домашнее задание.
1 группа - восстановить доказательство теоремы Пифагора по Бхаскара, решить 3 прикладные задачи.
2, 3 группы – 2 прикладные задачи.
По теме: методические разработки, презентации и конспекты
Урок геометрии 8 класс по теме:" Теорема Пифагора".
Разработан урок по геометрии в 8 классе по теме: "Теорема Пифагора" с презентацией....
Открытый урок по теме: "Теорема Пифагора" 8 класс.
ОТКРЫТЫЙ УРОК ПО ТЕМЕ:«ТЕОРЕМА ПИФАГОРА»8 класс ТЕМЕ: ТЕОРЕМА ПИФАГОРАЦЕЛЬ УРОКА: Рассмотреть теорему Пифагора и показать её...
план-конспект урока на тему "Теорема Пифагора"
Предмет: геометрия Класс: 8 Тема и номер урока в теме: «Теорема Пифагора» , №1 Базовый учебник: «Геометрия 7-9» Л.С. Атанасян, В.Ф. Бутузов, Ю....
Урок геометрии в 8 классе по теме "Теорема Пифагора"
Урок с элементами проектной деятельности и с использованием мультимедиа....
план конспект урока геометрии по теме "Теорема Пифагора"
План конспект урока геометрии по теме "Теорема Пифагора" с использованием электронных образовательных ресурсов....
Презентация по теме "Решение задач по теме "Теорема Пифагора""
Данную презентацию можно использовать для подготовки к ОГЭ по математике. Задания трёх уровней сложности....