Теорема Пифагора
презентация к уроку по геометрии (8 класс) по теме

Несколько способов доказательства теоремы Пифагора

Скачать:

ВложениеРазмер
Файл teorema_pifagora.pptx2.09 МБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Теорема Пифагора.

Слайд 2

Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника .

Слайд 3

Некоторые сведения… Среди учителей юного Пифагора традиция называет имена старца Гермодаманта и Ферекида Сиросского (хотя и нет твердой уверенности в том, что именно Гермодамант и Ферекид были первыми учителями Пифагора). Целые дни проводил юный Пифагор у ног старца Гермодаманта , внимая мелодии кифары и гекзаметрам Гомера.

Слайд 4

Приведем различные формулировки теоремы Пифагора в переводе с греческого, латинского и немецкого языков . У Евклида эта теорема гласит (дословный перевод): " В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол".

Слайд 5

В первом русском переводе евклидовых "Начал" , сделанном Ф. И. Петрушевским , теорема Пифагора изложена так: "В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол" .

Слайд 6

Перевод Герхардом Клемонским (начало 12 в.), на русский гласит: "Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол" . Или.. "Итак, площадь квадрата, измеренного по длинной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу" .

Слайд 7

В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих "Начал". С другой стороны, Прокл утверждает, что доказательство в "Началах" принадлежит самому Евклиду. Как мы видим, история математики почти не сохранила достоверных данных о жизни Пифагора и его математической деятельности.

Слайд 8

Доказательства теоремы Пифагора.

Слайд 9

Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы. Например, для треугольника ABC : квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах -по два.

Слайд 10

Доказательство Эпштейна Проведем прямую EF , на которой лежат диагонали двух квадратов, построенных на катетах треугольника и проведем прямую CD перпендикулярно EF через вершину прямого угла треугольника. Из точек А и В Продлим стороны квадрата, построенного на гипотенузе треугольника, до пересечения с EF . Соединим полученные на прямой EF точки с противолежащими вершинами квадрата и получим попарно равные треугольники . Заметим, прямая CD делит больший квадрат на две р авные прямоугольные трапеции, которые можно разбить на треугольники, составляющие квадраты на катетах. И получим квадрат со стороной, равной гипотенузе треугольника. Теорема доказана.

Слайд 11

Доказательство Нильсена . 1 . Продлим сторону АВ квадрата, построенного на гипотенузе треугольника. 2. Построим прямую EF , параллельную ВС. 3. Построим прямую FH ,параллельную АВ. 4. Построим прямую из точки D , параллельную СН. 5. Построим прямую из точки А, параллельную С G 6. Проведем отрезок MN , параллельный СН 7. Так как все фигуры, полученные в большем треугольнике равны фигурам в квадратах, построенных на катетах, значит площадь квадрата на гипотенузе равна сумме площадей квадратов на катетах. Теорема доказана. В С А D G E F H M N

Слайд 12

Доказательство Бетхера . Проведем прямую, на которой лежат диагонали квадратов, построенных на катетах треугольника и опустим из вершин квадратов параллельные отрезки на эту прямую. Переставим большие и маленькие части квадратов, расположенные над осью. Разобьем полученную фигуру как указанно на рисунке и расположим их так, чтобы получился квадрат, сторона которого равна гипотенузе треугольника. Теорема доказана.

Слайд 13

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Доказательство Рассмотрим прямоугольный треугольник с катетами a , b и гипотенузой c (рис. 1). Докажем, что c 2 = a 2 + b 2 . Достроим треугольник до квадрата со стороной a + b так, как показано на рисунке 2. Площадь S этого квадрата равна ( a + b ) 2 . C другой стороны, этот квадрат составлено из четырех равных прямоугольных треугольников, площадь каждого из которых равна 1/2 a b , и квадрата со стороной c , поэтому S = 4 · 1/2 · a b + c 2 = 2 a b + с 2 .Таким образом, ( a + b ) 2 = 2 a b + с 2 ,откуда с 2 = a 2 + b 2 . Теорема доказана.

Слайд 14

На данный момент в научной литературе зафиксировано 367 доказательств теоремы Пифагора. Именно это число и занесено в книгу рекордов Гиннеса, а сама теорема считается имеющей наибольшее количество доказательств. Если добавить к этому доказательства теоремы Пифагора, которые не отнесены к опубликованным в научной литературе, то получится немногим меньше 500 способов доказательств этой теоремы (геометрических, алгебраических, механических и т.д.)

Слайд 15

Конец… Спасибо за внимание)… Выполнила: Раптанова Юлия 8«Б » МБОУ «Лицей №124» Учитель: Скрылева Н.Н.


По теме: методические разработки, презентации и конспекты

Урок изучения нового материала «Теорема, обратная теореме Пифагора» к п. 55, учеб.Геометрия 7-9/ Л. С. Атанасян и др.

Предлагаемый материал является уроком изучения нового материала. Цели урока: 1) рассмотреть теорему, обратную теореме Пифагора,  и показать её применение в процессе решения задач ...

Презентация к уроку геометрии в 8 классе по теме "Теорема, обратная теореме Пифагора"

Презентация к уроку геометрии в 8 классе по теме "Теорема, обратная теореме Пифагора"...

План - конспект урока па теме "Теорема, обратная теореме Пифагора"

Конспект составлен для учителей, преподающих в 8 классах общеобразовательных школ с белорусским языком обучения. Сформулированы цели урока, определены тип, форма и структура урока....

Урок геометрии с использованием ИКТ "Теорема, обратная теореме Пифагора"

Данный  урок изучения нового материала в системе уроков по теме «Теорема Пифагора», реально отражающий учебный план и оптимально соответствующий программе  по   учебнику...

Теорема Пифагора. Обратная теорема. Решение задач

Третий урок по теме. Учащиеся уже имеют навыки применения прямой и обратной теоремы в решении задач. В конце урока проходит самостоятельная работа с последующей самопроверкой....

Разработка урока по геометрии 8 класс по теме "Теорема, обратная теореме Пифагора"

Комбинированный урок, содержит самостоятельную работу по теореме Пигора...

презентация к уроку геометрии по теме "Теорема, обратная теореме Пифагора"

презентация к уроку геометрии по теме "Теорема, обратная теореме  Пифагора"...