Тема: «Теорема синусов».
план-конспект урока по геометрии (9 класс) на тему
Урок геометрии в 9 классе. Урок открытия нового знания. Сценарий урока составлен в технологии деятельностного метода.
Скачать:
Вложение | Размер |
---|---|
http://nsportal.ru/sites/default/files/teorema_sinusov.doc | 84.5 КБ |
Предварительный просмотр:
Урок геометрии в 9 классе.
Тип урока: ОНЗ.
Тема: «Теорема синусов».
Автор: Метрик Е.В.
Урок составлен в технологии деятельностного метода.
Основные цели:
1.Доказать теорему синусов и показать ее применение при решении задач.
2. Повторить и закрепить: вычисление площади треугольника по двум сторонам и углу между ними, вычисление площади параллелограмма, пропорция, основное свойство пропорции, умение составлять новые пропорции, умение выразить один из членов пропорции через остальные три.
Оборудование, демонстрационный материал.
задания для актуализации знаний:
использование решение домашнего задания №1020(в),№1021,№1024(а,б)
2) Найти отношения и сравнить
ВС/ Sin α
АВ/ SinС
3)Для произвольного треугольника АВС найти отношения сторон треугольника к синусам противолежащих углов и сравнить полученные результаты.
2)Эталоны
S=½ a×b×sin α, где а,b-стороны треугольника,α- угол между ними
S= a×b×sin α, где а,b-стороны параллелограмма, α- угол между ними
Эталон: а = с
в d
( аd=вс)
а = в =с
sinА sinВ sinС
Эталон для самопроверки самостоятельной работы
Карточка для этапа рефлексии
Ответьте на вопросы:
1)Данная тема мне понятна.
2)Я хорошо понял теорему синусов
3)Я знаю, как пользоваться теоремой синусов
4)В самостоятельной работе у меня все получилось
5)Я понял теорему, но в самостоятельной работе на уроке допустил ошибки при вычислении___________________________________________________
6)Я доволен своей работой на уроке___________________________________
Раздаточный материал
Индивидуальные доски для обратной связи
Карточка план- реализации проекта для работы на этапе «Реализация построенного проекта»
1.Выразите площадь треугольника через синус угла В, затем угла С, затем угла А. Пронумеровать равенства (1), (2),(3)
2.Приравняйте 1 и 2 равенства, разделите полученное равенство на (½ВС)
3. Запишите полученное равенство и составьте пропорцию: равенство отношений сторон треугольника к синусам противолежащих углов.
4.Аналогично, приравняйте 2 и 3 раенства и проделайте аналогичные шаги.
5.Сделайте вывод.
Таблица Брадиса.
Ход урока
1 этап. Мотивация к учебной деятельности.
Цель этапа: 1)включить учащихся в учебную деятельность;
2) определить содержательные рамки урока;
Организация учебного процесса на этапе 1
-Здравствуйте, умницы и умники, я рада вас видеть.
-Чем мы занимались на прошлом уроке? (мы доказали теорему о площади треугольника)
-Какие задачи вы учились решать? ( на вычисление площади треугольника по двум сторонам и углу между ними)
-Сегодня на уроке мы продолжим работать с треугольником и расширим свои знания о нем.
-Я уверена, что на этом уроке мы с вами будем так же дружно и успешно работать, как и на предыдущих уроках.
- Желаю вам новых открытий и успешных ответов.
2 этап. Актуализация знаний и фиксация индивидуальных затруднений в пробном действии.
Цель этапа:1) актуализировать учебное содержание, необходимое и достаточное для восприятия нового материала: теоремы синусов;
2) актуализировать мыслительные операции, необходимые и достаточные для восприятия нового материала: сравнение, анализ, обобщение;
3) зафиксировать все повторяемые понятия и алгоритмы в виде схем и символов: в виде правил, теорем.
4) ) зафиксировать индивидуальные затруднения в деятельности, демонстрирующие на личностно значимом уровне недостаточность имеющихся знаний: : теоремы синусов
Организация учебного процесса на этапе 2
-Чем мы будем заниматься на этом этапе урока?
-Сформулируйте теорему о площади треугольника. (Площадь треугольника равна половине произведения двух его сторон на синус угла между ними)
На доске появляется эталон
S=½ a×b×sinα, где а,b-стороны треугольника,α- угол между ними.
Проверим решение домашней задачи № 1020(в) с помощью кодоскопа.
- ученик, подготовивший решение на пленке комментирует решение задачи.
S==½×14×7×sin48=7×7×0,7347=36 ( см2)
- Как вы определили значение синуса угла 48 градусов? (пользуясь таблицей Брадиса, с помощью калькулятора...)
- Что в домашней задаче № 1021 вам нужно было доказать.
(Докажите, что площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними)
- Кто желает доказать?
На доске появился эталон:
S= a×b×sin α, где а,b-стороны параллелограмма, α- угол между ними.
- Разберем решение задачи №1024(а) и № 1020(б), которые учащиеся должны были решить по выбору.
№1020(а)
В Найдите площадь треугольника АВС,
если ‹А= α, а высоты, проведенные из
вершин В и С, соответственно равны h и h
К
С С
А Н
Решение:
½АС×h = ½АВ ×h
Из треугольника АВН по определению синуса острого угла в прямоугольном треугольнике имеем
Sin α=h/ АВ→АВ=h/ Sin α
Из треугольника АКС по определению синуса острого угла в прямоугольном треугольнике имеем
Sin α=h/ АС→АС=h/ Sin α
3) По формуле
S=½ a×b×sin α, где а,b-стороны треугольника,α- угол между ними
Найдем площадь треугольника
S=½ АВ× АС×sin α= ½ h/ Sin α× h/ Sin α× Sin α =h ×h/ 2 sinα
№1020(б)
В
А Н Н С С
Найдите площадь треугольника АВС, если ‹А= α, ‹В=β, а высота, проведенная из вершины В, равна h.
Решение.
-На планшетах, в группах найдите отношение стороны ВС к синусу противолежащего угла, и отношение стороны АВ к синусу противолежащего угла и сравните результаты.
ВС/ Sin α=h/Sin( α+β) Sin α
АВ/ Sin( α+β)=h/ Sin( α+β) Sin α
Учащиеся в группах по 4 человека работают, по окончании работы представители от групп выходят к доске и демонстрируют полученные результаты - отношения равны.
-Как называется полученное равенство? ( пропорция)
Эталон: а = с
в d
_Составьте новые пропорции.
На доске эталоны.
Выразите в пропорции а, в, с,d
-Назовите основное свойство пропорции ( аd=вс)
Эталон.
Обобщаем, какие эталоны появились на доске.
Какое последнее равенство мы получили, использовав решение домашней задачи? (стороны треугольника пропорциональны синусам противолежащих углов).
-Чем мы сейчас займемся? ( мы получим задание, в котором будет затруднение)
-А для чего мы это сделали? ( мы повторили , чтобы все это использовать для открытия нового)
- На планшетах, в группах.
В
А С
Найдите отношения сторон ВС, АВ, АС к синусам противоположных углов и докажите, что они равны.
-Чем отличается это задание от предыдущего? ( нам нужно доказать, что отношения сторон к синусам противолежащих углов равны)
- Что вам придется доказывать? ( равенство отношений)
-Как называется равенство, которое требуется доказать? ( теорема)
-Сформулируйте тему урока. ( Доказать теорему о том, что отношения сторон к синусам противолежащих углов равны)
-В геометрии эта теорема называется теоремой синусов.
Согласованная тема записывается на доске и в тетрадях
«Теорема синусов».
Попробуйте доказать теорему..
На выполнение задания отводится 2 минуты.
Задания выполняют на индивидуальных досках в группах.
По истечению времени прошу продемонстрировать полученные результаты.
Некоторые выставляю на доску.
3 этап. Выявление места и причины затруднения.
1) организовать коммуникативное взаимодействие, в ходе которого выявляется и фиксируется отличительное свойство задания, вызвавшего затруднение в учебной деятельности: отсутствие формулы для вычисления площади треугольника по двум сторонам и углу между ними .
Организация учебного процесса на этапе 3
Вариант первый: фиксирую, что нет правильных ответов.
-Что показало выполнение задания?
( Мы не смогли решить эту задачу.)
Вариант второй: фиксирую правильные ответы.
-Вы можете доказать, что вы правильно выполнили задание?
-Нет.
_Что показало выполнение пробного задания? ( Мы не можем доказать правильность своего решения)
-Какое задание вы должны были выполнить? ( Найти отношения сторон ВС, АВ, АС к синусам противоположных углов и доказать, что они равны)
_ В чем у вас было затруднение? (мы не смогли выполнить задание или не смогли обосновать свое решение)
-Как вы пытались выполнить задание? Какие известные знания пытались применить?
-Вы выяснили чего вы не знаете? (не знаем, как доказать)
- Что мы теперь будем делать?
( доказывать теорему…)
_ я вам в этом помогу.
4 этап. Построения проекта выхода из затруднения.
Цель этапа:1) организовать коммуникативное взаимодействие для построения нового способа действия, устанавливающего причину выявленного затруднения;
Организация учебного процесса на этапе 4
Чем мы сейчас будем заниматься? (построим план выхода из затруднения)
-Сформулируйте цель нашей деятельности? ( Найти отношения сторон ВС, АВ, АС к синусам противоположных углов и доказать, что они равны)
-Как вы думаете какие знания нам помогут из тех, что мы повторили в процессе актуализации?
-Какая формула выражает зависимость между сторонами треугольника и синусами его углов?
S=½ a×b×sinα, где а,b-стороны треугольника,α- угол между ними.
-Выразите площадь треугольника через синус угла В, затем угла С, затем угла А.
S=½ АВ×ВС×sinВ, (1)
S=½ АС×ВС×sinС, (2)
S=½ АВ×АС×sinА, (3)
- Можно ли приравнять 1и2, 2и3, 1и3 равенства?
-Почему? ( площадь одного и того же треугольника выражена по разному)
-Какое равенство у вас получится, если приравнять (1) и (2) равенства?
( ½ АВ×ВС×sinВ= ½ АС×ВС×sinС )
На что можно разделить полученное равенство? (½ВС)
-Какое равенство получится? ( АВ×sinВ= АС×sinС )
-Чему равно отношение АВ к sinС ? ( АС к sinВ)
-Аналогично можно провести работу со (2) и (3) равенствами?
Давайте обобщим все сказанное и составим план доказательства.
1.Выразите площадь треугольника через синус угла В, затем угла С, затем угла А. Пронумеровать равенства (1), (2),(3)
2.Приравняйте 1 и 2 равенства, разделите полученное равенство на (½ВС)
3. Запишите полученное равенство и составьте пропорцию: равенство отношений сторон треугольника к синусам противолежащих углов.
4.Аналогично, приравняйте 2 и 3 раенства и проделайте аналогичные шаги.
5.Сделайте вывод.
5 этап. Реализация построенного проекта.
Цель этапа: Организовать построение выхода из затруднения в групповой форме
Организация учебного процесса на этапе 5
Чем вы сейчас будете заниматься? (С помощью построенного плана реализовывать проект)
Далее работают учащиеся в группах.
На экране и у каждой группы план реализации проекта. 1.Выразите площадь треугольника через синус угла В, затем угла С, затем угла А. Пронумеровать равенства (1), (2),(3)
2.Приравняйте 1 и 2 равенства, разделите полученное равенство на (½ВС)
3. Запишите полученное равенство и составьте пропорцию: равенство отношений сторон треугольника к синусам противолежащих углов.
4.Аналогично, приравняйте 2 и 3 равенства и проделайте аналогичные шаги.
5.Сделайте вывод.
На планшетах четко нумеруют этапы решения.
К доске приглашаются учащиеся для оглашения результата деятельности.
Подведение итогов.
А где мы можем проверить правильность нашего решения?
Откроем учебники на стр.242
Итак, мы доказали теорему синусов.
Эталон на доске:
а = в =с
sinА sinВ sinС
6 этап Первичное закрепление с проговариванием во внешней речи.
Цель этапа: зафиксировать изученное учебное содержание во внешней речи.
Организация учебного процесса на этапе 6
-Какую учебную цель вы перед собой ставили? ( доказать, что стороны треугольника пропорциональны синусам противоположных углов)
-Вы справились с поставленной задачей?9да)
-Что сейчас вы будете делать?( попробуем эту теорему применить при решении задач)
-Откройте рабочую тетрадь по геометрии на стр 23, прочитайте задачу № 41.
Кто желает решить эту задачу?
7 этап. Самостоятельная работа с самопроверкой по эталону.
Цель этапа: проверить свое умение применять теорему о площади треугольника в типовых условиях на основе сопоставления своего решения с эталоном для самопроверки.
Организация учебного процесса на этапе 7
Что вы сейчас будете делать?(потренируемся)
Самостоятельно в тетрадях решите № 1025
На экране эталон решения
Выяснить у кого какие результаты.
Кто и где допустил ошибку.
8 этап. Включение в систему знаний и повторение.
Цель этапа:1) тренировать навыки использования нового содержания с ранее изученным.
Организация учебного процесса на этапе 8
Чем вы сейчас будете зниматься? (будем выполнять задание,где используется теорема синусов)
№ 1026
Приглашаю к доске ученика.
9 этап. Рефлексия учебной деятельности на уроке.
Цель этапа: зафиксировать новое содержание, оценить собственную деятельность.
Организация учебного процесса на этапе 9
-Какую цель вы ставили перед собой на уроке?
-Вы достигли поставленной цели?
Что помогало выполнять задание?
-Проанализируйте свою работу на уроке, заполнив карточку.
Карточка для этапа рефлексии
Ответьте на вопросы:
1)Данная тема мне понятна.
2)Я хорошо понял теорему синусов
3)Я знаю, как пользоваться теоремой синусов
4)В самостоятельной работе у меня все получилось
5)Я понял теорему, но в самостоятельной работе на уроке допустил ошибки при вычислении___________________________________________________
6)Я доволен своей работой на уроке_______________________________________
По желанию 2-3 человека озвучивают свой анализ деятельности на уроке
Домашнее задание.
П.97, № 42 из рабочей тетради, № 1025( б, д, ж, и- две задачи по выбору учащегося)
По теме: методические разработки, презентации и конспекты
Интерактивный тест по геометрии для 9 класса по теме " Теоремы синусов и косинусов"
Интерактивный тест, который содержит 5 заданий с выбором одного верного ответа из четырех предложенных, с учетом времени, затраченного на прохождение теста; тест создан в программе PowerPoint-2007 с и...
Набор слайдов по теме Теорема синусов
Презентация содержит набор слайдов для урока по теме "Теорема синусов" в 8 класе. Слайды можно использовать на усмотрение учителя....
Теорема синусов и косинусов.Цели урока: развивать навыки самоконтроля ,воспитывать волю и настойчивость для решения поставленной задачи. Углубить знания по теме «Теорема синусов и косинусов». Научиться применять их при решении задач. Развивать умения сра
Цели урока: развивать навыки самоконтроля ,воспитывать волю и настойчивость для решения поставленной задачи. Углубить знания по теме «Теорема синусов и косинусов». Научиться применять их при реш...
9 класс геометрия Самостоятельная работа по теме "Теорема синусов и косинусов"
9 класс геометрия Самостоятельная работа по теме "Теорема синусов и косинусов"...
Урок по геометрии в 9 классе на тему "Теорема синусов"
Литература: учебник Геометрия, 7-9 классы, Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др., 2010Тема: Теорема синусов.Тип урока: урок открытия нового знанияЦели урока:Познакомить учащихся с теоремой ...
Решение задач по теме «Теоремы синусов и косинусов»
повторение теорем и решение задач. Геометрия 9 класс (Мерзляк)...
Тест по теме "Теорема синусов и косинусов"
Тест по теме "Теорема синусов и косинусов" для подготовки к ГИА-9...