Теорема Пифагора
презентация к уроку по геометрии (8 класс) по теме

Теорема Пифагора

Скачать:

ВложениеРазмер
Office presentation icon teorema_pifagora.ppt280 КБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Теорема Пифагора Пребудет вечной истина, как скоро Её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далёкий век. Работу выполнил: Ученик 9 класса «А» Лизунов Александр.

Слайд 2

Содержание Формулировка теоремы Доказательства теоремы Значение теоремы Пифагора

Слайд 3

Формулировка теоремы « Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах» « Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах». Во времена Пифагора теорема звучала так: или

Слайд 4

Современная формулировка « В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».

Слайд 5

Доказательства теоремы Существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.).

Слайд 6

Самое простое доказательство Рассмотрим квадрат, показанный на рисунке. Сторона квадрата равна a + c . c a

Слайд 7

В одном случае (слева) квадрат разбит на квадрат со стороной b и четыре прямоугольных треугольника с катетами a и c . a c a c В другом случае (справа) квадрат разбит на два квадрата со сторонами a и c и четыре прямоугольных треугольника с катетами a и c . a c Таким образом, получаем, что площадь квадрата со стороной b равна сумме площадей квадратов со сторонами a и c .

Слайд 8

Доказательство Евклида Дано: ABC -прямоугольный треугольник Доказать: S ABDE =S ACFG +S BCHI

Слайд 9

Доказательство: Пусть ABDE -квадрат, построенный на гипотенузе прямоугольного треугольника ABC , а ACFG и BCHI -квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q ; соединим точки C и E , B и G .

Слайд 10

Очевидно, что углы CAE=GAB(=A+90°) ; отсюда следует, что треугольники ACE и AGB (закрашенные на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA ; они имеют общее основание AE и высоту AP , опущенную на это основание, следовательно S PQEA = 2S ACE Точно так же квадрат FCAG и треугольник BAG имеют общее основание GA и высоту AC; значит, S FCAG =2S GAB Отсюда и из равенства треугольников ACE и GBA вытекает равновеликость прямоугольника QPBD и квадрата CFGA; аналогично доказывается и равновеликость прямоугольника QPAE и квадрата CHIB. А отсюда, следует, что квадрат ABDE равновелик сумме квадратов ACFG и BCHI, т.е. теорема Пифагора.

Слайд 11

Алгебраическое доказательство Дано: ABC -прямоугольный треугольник Доказать: AB 2 =AC 2 +BC 2 Доказательство: 1) Проведем высоту CD из вершины прямого угла С . 2) По определению косинуса угла соsА=AD/AC=AC/AB , отсюда следует AB*AD=AC 2 . 3) Аналогично соsВ=BD/BC=BC/AB , значит AB*BD=BC 2 . 4) Сложив полученные равенства почленно, получим: AC 2 +BC 2 = АВ *(AD + DB) AB 2 =AC 2 +BC 2 . Что и требовалось доказать.

Слайд 12

Геометрическое доказательство Дано: ABC -прямоугольный треугольник Доказать: BC 2 =AB 2 +AC 2 Доказательство: 1) Построим отрезок CD равный отрезку AB на продолжении катета AC прямоугольного треугольника ABC . Затем опустим перпендикуляр ED к отрезку AD , равный отрезку AC , соединим точки B и E . 2) Площадь фигуры ABED можно найти, если рассматривать её как сумму площадей трёх треугольников: S ABED =2*AB*AC/2+BC 2 /2 3) Фигура ABED является трапецией, значит, её площадь равна: S ABED = (DE+AB)*AD/2. 4) Если приравнять левые части найденных выражений, то получим: AB*AC+BC 2 /2=(DE+AB)(CD+AC)/2 AB*AC+BC 2 /2= (AC+AB) 2 /2 AB*AC+BC 2 /2= AC 2 /2+AB 2 /2+AB*AC BC 2 =AB 2 +AC 2 . Это доказательство было опубликовано в 1882 году Гэрфилдом.

Слайд 13

Значение теоремы Пифагора Теорема Пифагора- это одна из самых важных теорем геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии .

Слайд 14

Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum - ослиный мост, или elefuga - бегство «убогих», так как некоторые «убогие» ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому «ослами», были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также «ветряной мельницей», составляли стихи, вроде «Пифагоровы штаны на все стороны равны», рисовали карикатуры.


По теме: методические разработки, презентации и конспекты

Урок изучения нового материала «Теорема, обратная теореме Пифагора» к п. 55, учеб.Геометрия 7-9/ Л. С. Атанасян и др.

Предлагаемый материал является уроком изучения нового материала. Цели урока: 1) рассмотреть теорему, обратную теореме Пифагора,  и показать её применение в процессе решения задач ...

Презентация к уроку геометрии в 8 классе по теме "Теорема, обратная теореме Пифагора"

Презентация к уроку геометрии в 8 классе по теме "Теорема, обратная теореме Пифагора"...

План - конспект урока па теме "Теорема, обратная теореме Пифагора"

Конспект составлен для учителей, преподающих в 8 классах общеобразовательных школ с белорусским языком обучения. Сформулированы цели урока, определены тип, форма и структура урока....

Урок геометрии с использованием ИКТ "Теорема, обратная теореме Пифагора"

Данный  урок изучения нового материала в системе уроков по теме «Теорема Пифагора», реально отражающий учебный план и оптимально соответствующий программе  по   учебнику...

Теорема Пифагора. Обратная теорема. Решение задач

Третий урок по теме. Учащиеся уже имеют навыки применения прямой и обратной теоремы в решении задач. В конце урока проходит самостоятельная работа с последующей самопроверкой....

Разработка урока по геометрии 8 класс по теме "Теорема, обратная теореме Пифагора"

Комбинированный урок, содержит самостоятельную работу по теореме Пигора...

презентация к уроку геометрии по теме "Теорема, обратная теореме Пифагора"

презентация к уроку геометрии по теме "Теорема, обратная теореме  Пифагора"...