Особенности определения физических условий достижения экстремальных значений физической величиной.
учебно-методический материал по физике (11 класс) на тему

Залялютдинова Зульфия Амировна

В  работе рассматриваются трудности и особенности физического этапа решения задач с экстремальными значениями физических величин. Дана классификация таких задач на физическом этапе.  Рассмотрены примеры решения задач с подробным анализом.

Скачать:


Предварительный просмотр:

Особенности определения физических условий достижения экстремальных значений физической величиной.

Решение физических задач играет большую роль в формировании навыков самостоятельной работы. Именно это умение наиболее полно характеризует уровень усвоения знаний, показывает, как ученики могут практически применять имеющиеся знания. Энрико Ферми утверждал, что “человек знает физику, если он умеет решать задачи”.

Особого внимания  заслуживают  задачи с экстремальными значениями физических величин.

Практически любые физические величины могут приминать экстремальные значения: координаты, проекции и модули скорости, ускорения, силы и импульса, работа, энергия и мощность и т.п. По определению экстремальными  величинами являются амплитуда колебаний, максимальная высота подъема и дальность полета, максимальная скорость электронов, врывающихся с поверхности металла при внешнем фотоэффекте и т.д. Решение физических задач с экстремальными  значениями физических величин требует от учащихся глубокого понимания физических процессов, законов и явлений и предполагают использование их в измененной или новой ситуации.

Экстремальные значения функций, как правило, рассматривают в математике, и применение этих понятий к физическим величинам вызывает у учащихся школ и абитуриентов вузов ряд трудностей.  При этом  затруднения возникают, как при  определении физических условий достижения экстремальных значений физической величины, так и при выборе математического метода решения задачи. Поэтому учащихся необходимо обучать принципам решения подобных задач с целью дальнейшего повышения эффективности учебного процесса.

В этой работе рассматривается трудности и особенности физического этапа решения задач с экстремальными значениями физических величин. Дана классификация таких задач на физическом этапе.  Рассмотрены примеры решения задач с подробным анализом.

На физическом этапе решения задач с экстремальными значениями физических величин основной задачей является определение физических условий достижения максимального или минимального значения величиной. В некоторых случаях одна величина достигает максимального значения, когда другая величина минимальна (и наоборот). В других задачах искомая физическая величина максимальна при достижении максимального значения другой величины (или минимальна, когда другая величина также минимальна). Иногда требуется определить как максимальное, так и минимальное значение физической величины и найти их разность.

Чтобы определить эти условия решаемую задачу необходимо правильно проанализировать. Для этого в первую очередь нужно правильно уяснить условия задачи, записать исходные данные, смоделировать происходящие физические процессы, при необходимости построить четкий рисунок и записать необходимые для данной задачи законы и формулы. Так же при определении этих условий обязательно надо обратить внимание на тот факт, что в некоторых задачах максимальные или минимальные величины могут быть заданы  неявным образам. Кроме того, неявным образом может присутствовать условие достижимости физической величиной экстремального значения.

1. Одновременное достижение максимальных (минимальных) значений физическими величинами.

Часто при решении задач с экстремальными значениями физических величин  встречаются ситуации, когда физическая величина достигает максимального значения, когда другая величина максимальна (или обе минимальны). Например, кинетическая энергия нерелятивистского тела минимальна, когда минимальна его скорость.

При решении подобных задач следует обратить внимание на то, что минимальное значение физическая величина может принимать при равенстве нулю, в какой-нибудь  момент времени.

Задача 1. На сферической поверхности радиуса R находится тело. Коэффициент трения тела о поверхность сферы , угол между вертикалью  и радиус-вектором тела . Какова максимальная угловая скорость вращения сферы, при  которой тело удерживается на ее поверхности.

При решении этой задачи необходимо установить, следующие условия. Угловая скорость будет достигать своего максимального значения в том случае, когда угловое ускорение будет максимальным. В случае же, когда угловая скорость будет меньше максимальной, то тело не будет удерживаться на поверхности.

Задача 2. Тележка скатывается по гладким рельсам, образующим вертикальную петлю радиуса R. С какой минимальной высоты  должна скатываться тележка для того, чтобы она не покинула рельсов по всей их длине? Каково будет движение, если она скатывается с высоты  меньшей .

Здесь следует учитывать, что при определении минимальной высоты , с которой должна спуститься тележка должны принимать минимальные значения центростремительное ускорение тележки в верхней точке мертвой петли, и, следовательно, ее скорость в верхней точке траектории. С учетом второго закона Ньютона и закона сохранения механической энергии получается окончательный результат .

Следует отметить, что при условии H<Hmin, скорость и ускорение тележки в верхней точки будут также принимать значения меньше минимально допустимых значений, и поэтому тележка не сможет проехать по всем рельсам. Тележка покинет рельсы до достижения верхней точки мертвой петли.

2. Физическая величина достигает минимального значения при максимальном значение другой величины.

Существует ряд задач, в которых физическая величина принимает максимальное значение при условии, когда другая величина минимальна (и наоборот).

Такие ситуации, возникают, например, в случае изучения условия равновесия тела, имеющего ось вращения. Известно, что условие равномерного вращения это равенство моментов сил, вращающих тело по часовой и против часовой стрелок: . Одного и того же значения момента силы можно получить при разных соотношениях величины силы и ее плеча. Минимальная сила, которую нужно приложить к телу для обеспечения его равномерного вращения, будет достигаться в том случае, когда плечо силу будет максимальным.

Задача 2. Масса цилиндрического катка равна 100 кг, радиус 0,5 м. Какую минимальную силу нужно приложить к оси катка, чтобы закатить его на тротуар с высотой ступеньки 10 см?

Для решения этой задачи, используется правило моментов. При закатывании катка на тротуар сила прикладывается к его оси, вращая его вокруг выступа тротуара. К оси катка, совпадающей с его центром масс, приложена и сила тяжести.  - плечо прилагаемой внешней силы,  - плечо силы тяжести, равное горизонтальному расстоянию от линии действия силы тяжести до тротуара. Его можно найти по теореме Пифагора . Очевидно, что минимальное значение прилагаемой к телу внешней силы достигается при максимальном значении длины его плеча, которое равно радиусу катка. Таким образом, получаем, что минимальная сила, которую нужно приложить к оси катка, равна 600 Н.

В задачах гидростатики в случае, когда плотность тела меньше плотности жидкости, оно плавает, частично погрузившись в жидкость. Минимальная сила, которую надо приложить к телу для полного погружения его жидкость, достигается при условии равновесия полностью погруженного тела в жидкость, когда оно покоится или равномерно движется, т.е. при минимальном значении ускорения, равном нулю. В качестве примера приведем условие следующей задачи.

Задача 3.  Льдина объемом 2 м3 плавает в воде. Какую силу нужно приложить, чтобы полностью погрузить льдину в воду? Плотность льда 900 кг/м3.

Такие ситуации возникают также в задачах на взаимное превращение кинетической энергии в потенциальную (и наоборот) потенциальная энергия принимает максимальное значение, в то время как кинетическая минимальное (и наоборот). То же самое происходит и при взаимных превращениях в колебательном контуре, когда энергия магнитного поля катушки индуктивности переходит в электрическую энергию конденсатора (и наоборот). Так, например:

Задача 4. Колебательный контур составлен из индуктивности 0,1 Гн и конденсатора 10 мкФ. В момент, когда напряжение на конденсаторе равно 30 В, ток в контуре 0,4 А. Каков максимальный ток в контуре?

3 Нахождение максимальной разности между физическими величинами

При решении некоторых физических задач требуется определить максимальную разность между физическими величинами, для чего следует определить как максимальное, так и минимальное значение искомой величины. Рассмотрим особенности таких задач на  конкретных примерах.

Задача 5. Найти максимальное изменение магнитного потока при равномерном вращении рамки площадью 100 см2 в магнитном поле 0,01 Тл, если ось вращения расположена перпендикулярно силовым линиям магнитного поля

Очевидно, что максимальное изменение магнитного потока равно разности его максимального и минимального значений. Пусть  - угол между перпендикуляром к плоскости рамки  и направлением вектора магнитной индукции поля . В случае = 0 магнитный поток имеет максимальное значение, т.к. . Соответственно, минимальное значение магнитного потока достигается при повороте рамки на угол =180°, когда . В результате получаем выражение , максимальное изменение магнитного потока при равномерном вращении рамки равно  Вб.

При решении данной задачи учащиеся совершают типичную ошибку, считая, что минимальное значение магнитного потока равно нулю и достигается при повороте рамки на угол = 90°.

Иногда в условиях задачи уже задана разность между максимальным и минимальным значением физической величины и требуется найти какую-то другую величину. Для решения такой задачи необходимо определить условия достижения физической величиной своих экстремальных значений.

Задача 6. Чему равна масса шарика, вращающегося в вертикальной плоскости, если максимальная разность силы натяжения нити при вращении составляет 3 Н?

При решении задач на динамику вращения в вертикальной плоскости материальной точки, закрепленной на нити или стержне, возникает вопрос о максимальной разности сил натяжения нити. Очевидно, что максимальная сила натяжения достигается в нижней точке траектории, так как она должна не только уравновесить силу тяжести, но и обеспечить центростремительное ускорение, направленное вертикально вверх. В верхней точке траектории сила натяжения нити минимальна, так как векторы этой силы, центростремительного ускорения и силы тяжести совпадают по направлению. Причем необходимо различать две ситуации, а именно вращение тела с постоянной скоростью и с переменной скоростью, которая в последнем случае изменяется под действием силы тяжести. Максимальная разность достигается при вращении тела с переменной скоростью.

Итак, на физическом этапе решения задачи проводится анализ условий достижения экстремальных значений физической величиной. Затем применяется второй закон Ньютона для верхней и нижней точек траектории в векторном виде и в проекции на вертикально направленную ось. Из полученных формул определяются минимальное и максимальное значение  силы натяжения нити. После чего находится их разность и определяется искомая масса тела.

Анализ решений задач с экстремальными значениями физических величин и допускаемых при этом ошибок показывает, что физический этап решения задач этого типа является определяющим для правильного их решения.

Литература:

  1. Бабаев В.С., Залялютдинова З.А. Математические методы решения задач с экстремальными значениями физических величин. // Теоретические и методические проблемы обучения в школе и вузе (математика, информатика). Международный сборник научных статей. СПб., Мурманск.- Изд-во РГПУ, Мурманский ГПУ, 2004.- с. 81-85.
  2. Бубликов С.В., Кондратьев А.С. Методологические основы решения задач по физике в средней школе: Учебное пособие, СПб.: Образование, 1996.


По теме: методические разработки, презентации и конспекты

Учет индивидуальных особенностей учащихся на уроках физической культуры как необходимое условие достижений ими личностных результатов

Учет индивидуальных особенностей учащихся на уроках физической культуры как необходимое условие достижений ими личностных результатов.ФГОС основного общего образования большое внимание уделяет педагог...

Измерение как способ определения значения физической величины

В публикации  представлена логика понятия получения значений величин методами прямого и косвенного измерения как последовательная совокупность операций выполняемых человеком....

Особенности построения педагогических условий совершенствования физической подготовки старшеклассников (на примере секции «Тхэквондо»)

Стратегической  целью  современного  профессионального  образования является формирование профессиональной компетентности как совокупности разносторонних  компетенций  вы...

Методическая разработка по физике (7 класс). Физическая игра «Путешествие в страну физических величин»

Данная игра проводится для повышения интереса учащихся к изучению предмета физика, для развития познавательной активности, используя возрастной интерес к играм. Является инструментом контроля усвоения...

Физический диктант для 7 класса: Физическое тело, вещество. Физическая величина, прибор.

Интерактивная презентация для проведения физического диктанта для 7 класса по теме: Физическое тело, вещество. Физическая величина, прибор....