Решение задач на применение законов Кирхгофа
статья по физике (11 класс) по теме

Некрасов Александр Григорьевич

Приведены примеры применения законов Кирхгофа в решении задач повышенного и высокого уровня.

Скачать:

ВложениеРазмер
Файл reshenie_zadach_na_primenenie_zakonov_kirhgofa.docx60.2 КБ

Предварительный просмотр:

Решение задач на применение законов Кирхгофа

Некрасов Александр Григорьевич, учитель физики

Статья относится к разделу : преподавание физики



Цели:

  1. Образовательная.  Формировать понятие электрической цепи и ее элементов.  Научится применять законы Кирхгофа для расчета сложных электрических цепей. Развивающая. Совершенствовать умения, активизировать познавательную деятельность учащихся через решение задач на расчет сложных электрических цепей.
  2. Воспитательная. Прививать культуру умственного труда, аккуратность, умение анализировать, видеть практическую ценность получаемых знаний, продолжить формирование коммуникативных умений.

Вид урока: практикум по решению задач.

        Законы Кирхгофа применяются для расчета сложных электрических цепей.

Первый закон Кирхгофа:  k=1nIk=0.        

Второй закон Кирхгофа:   k=1nuk=kEk.

Напомним правила знаков. Направления токов в узле выбирается произвольно. Притекающие в узел токи будем брать со знаком плюс, а вытекающие из узла – со знаком минус. Выбираем положительное направление обхода контура (обозначено овалом со стрелкой). Выбираем направление напряжения по направлению тока. Если «направление»  напряжения совпадает с направлением обхода контура, то напряжение берется со знаком плюс. В противном случае – со знаком минус. Обозначим стрелкой над ЭДС направление возрастания потенциала (от катода к аноду). Если эта стрелка совпадает с направлением обхода контура, то E берется со знаком плюс, если нет, то с минусом.

Рассмотрим стандартную задачу на расчет сложной электрической цепи постоянного тока.

Задача1. Даны две батареи аккумуляторов с ЭДС E1=10 B с внутренним сопротивлением r1=1 Ом, E2=8 В и r2=2 Ом.   Реостат имеет сопротивление R=6 Ом. Элементы цепи соединены по схеме, показанной на рисунке. Найти силу тока в батареях и реостате.

Дано:

E1=10 B 

E2=8 B 

r1=1 Ом 

r2=2 Ом 

R=6 Ом 


Найти: I1, I2, I3=?

Решение:

Запишем уравнения законов Кирхгофа в соответствии с обозначениями на рисунке.

I1+I2-I3=0   u1-u2+0=E1-E20+u2+u3=E2 

Так как u1=I1r1, u2=I2r2, u3=I3R,  то

I1 +I2-I3=0                      I1r1-I2r2+0=E1-E20+I2r2+I3R=E2. 

 Подставим в полученную систему данные, получим:

I1+I2-I3=0 

1I1-2I2-I3=2 

0+2I2+6I3=8 .

Решим эту систему по правилу Крамера. Найдем определитель системы:

∆=11-11-20026=1∙-2026-1∙1006-1∙1-206=-20. 

Дополнительные определители для неизвестных:

∆I1=01-12-20826=0∙-2026-1∙2026-1∙2-282=-12-4+16=-32. 

∆I2=10-1120086=1∙2086-0∙1006-1∙1-208=12-8=4.

∆I3=1101-22028=1∙-2286-1∙1208+0∙1-202=-20-8=-28. 

Искомые значения токов определим по формуле Ik=∆Ik∆:

I1=3220=1,6 A,  I2=-420=- 0,2 A,  I3=2820=1,4 A. 

Как видно, пришлось находить определители третьего порядка. Напомним один из способов их определения. Схема расчета определителя третьего порядка:

∆=a11a12a13a21a22a23a31a32a33=a11∙a22a23a32a33-a12∙a21a23a31a33+a13∙a21a22a31a32=

=a11a22a33-a32a23-a12a21a33-a31a23+a13(a21a32-a31a22).

        

Рассмотрим другие примеры.

Задача2. Резисторы с сопротивлениями R1=R2=1 Ом  и R3=2 Ом и конденсаторы емкостью C1=2 нФ, C2=3 нФ включены в цепь с ЭДС E=10 B (смотри рисунок), Внутренним сопротивлением которого можно пренебречь. Определите заряды, установившиеся на конденсаторах [1].

                                                                   

Дано:

R1=R2=1 Ом 

R3=2 Ом 

E=10 B 

C1=2 нФ 

С2=3 нФ 

                                                                                      q1=?; q2=?.

Решение:

Через конденсаторы постоянный ток не протекает. Тогда ток, который протекает по цепи, равен

I0=ER1+R2+R3=10 B4 Ом=2,5 А. Этот ток протекает через все резисторы. Чтобы определить заряды на конденсаторах, необходимо знать напряжения на них. Для этого воспользуемся вторым законом Кирхгофа. Поскольку всего два неизвестных, то и уравнений составим два.

u2+uC2=Eu2+u3+uC1=0. 

Напряжение u2=I0R2=2,5∙1=2,5 B. Из первого уравнения находим uC2=E-u2=7,5 B. Найдем напряжение на R3: u3=I0R3=2,5∙2 = 5 B. Из второго уравнения uC1=-u2-u3=

=-7,5 B. Заряды определим по формуле q=Cu:

q1=C1uC1=2∙7,5=15 нКл 

q2=C2uC2=3∙7,5=22,5 нКл. Это и есть ответы.

Приведем еще одну задачу в качестве примера применения законов Кирхгофа.

Задача 3. В схеме, изображенной на рисунке, ЭДС батареи E, сопротивление резистора R, индуктивности сверхпроводящих катушек - L1 и L2, причем L1>L2. Сначала замыкают ключ К1, а через некоторое ключ К2. Известно, что установившиеся токи через катушки L1 и L2 оказались одинаковыми. Определите силу тока, протекающего через резистор R в момент замыкания ключа К2. Внутренним сопротивлением батареи пренебречь  [2].

Решение этой задачи, как и предыдущей, в указанных ссылках не приведено. Для решения также воспользуемся законами Кирхгофа.

Составим второе уравнение Кирхгофа при замкнутом ключе К1. Так как катушки индуктивности сверхпроводящие, то их омическое сопротивление равно нулю. Пусть в установившемся режиме сила тока равна I0. Имеем

uR+uL1=E.                         (1)

В некоторый момент времени сила тока равна i1. Перепишем (1) в виде:

i1R+L1∆i1∆t=E. 

При замыкании ключа К2 соответствующие уравнения примут вид

uR+uL2=E и  i2R+L2∆i2∆t=E.     

Здесь необходимо отметить, что после установившегося режима ∆i∆t=0. Только в момент включения ключей эти производные отличны от нуля. Пусть ток i и есть тот ток, который изменяется в момент включения ключа К2. По правилу Ленца, этот ток будет направлен навстречу внешнему току I0=ER.  А это значит, что в момент включения ключа К2 ток через резистор R уменьшится. Составим еще одно уравнение: uL2-uL1=0, или uL1=uL2.  Так как uL=L∆I∆t,  то L1∆I1∆t=

=L2∆I2∆t. В установившемся режиме сила тока I0. По условию задачи силы тока в катушках одинаковые, т. е. по I02 после установления при замыкании ключа К 2. Изменения ∆I1=i-I02, ∆I2=I02. Имеем L1i-L1I02=L2I22, откуда i=I02L1L1+L2. Ток, который протечет через резистор в момент включения ключа К 2 равен IR=I0-I02L1L1+L2=

=I0L1-L22L1. Так как I0=ER, тогда окончательно получим IR=EL1-L22RL1. По-видимому, это и будет ответом. Такого рода задачи хорошо проверяются на опыте. По крайне мере, можно зафиксировать скачок тока в резисторе и в какую сторону.

Задача4. Какой должна быть ЭДС  E источника тока, чтобы напряженность электрического поля в плоском конденсаторе была равна E=2 кВ/м, если внутреннее сопротивление источника тока r=2 Ом, сопротивление резистора R=10 Ом, расстояние между пластинами конденсатора d=2 мм[3].

Для решения задачи воспользуемся вторым законом Кирхгофа для двух контуров, в которых указаны положительные направления обхода контуров.

uR+ur=E 

uC-uR=0 .

Так как uR=I0R, ur=I0r, то I0=ER+r. Из второго уравнения uC=uR=ERR+r. Для плоского конденсатора uC=Ed. Тогда

 E=uC(R+r)R =  Ed(R+r)R. Это ответ.

    Список использованной литературы.

  1. Москалев А. Н., Никулова Г. А..Физика. Готовимся к единому государственному экзамену. – М.: Дрофа, 2008. – 224.
  2. Физика. Большой справочник для школьников и поступающих в вузы / Ю. И. Дик, В. А. Ильин, Д. А. Исаев и др. – М.: Дрофа, 2008, - 735 с.
  3. Отличник ЕГЭ. Физика. Решение сложных задач. Под ред. В. А. Макарова, М. В. Семенова, А. А. Якуты. ФИПИ. – М.: - Интеллект-Центр, 2010.-368 с.

По теме: методические разработки, презентации и конспекты

Урок по физике в 10 классе на тему " Решение задач на применение законов Ньютона"

Конспект урока по физике на применение законов Ньютона...

Презентация к уроку "Решение задач на применение закона сохранения импульса"

Презентация урока решения задач на применения закона сохранения импульса содежит разноуровненвые качественные и рассчетные задачи, с подробным решением и анимационными чертежами, необходимый теоретиче...

Урок применения ЭОР "Решение задач на применение закона Архимеда"

Решение задач «Закон Архимеда» Цели  урока: Формирование умений вычислять силу Архимеда; показать значение познания мира через мышление; Проверка знаний учащихся по теме «Архимедова си...

Решение задач на применение законов Ньютона

Интегрирующая цель: после изучения темы ученики должны: понимать и знать:1.      Понятие силы, единицы измерения силы;2.      2-ой закон Ньютона, его ...

Методическая разработка урока: Решение задач на применение законов Ньютона

Данный урок позволяет применить законы Ньютона для решения задач на примере снегохода. Методическая разработка сопровождается презентацией....

Решение задач на применение закона ЭДС индукции и определение энергии магнитного поля тока. 9 класс

Решение задач на применение закона ЭДС индукции и определение энергии магнитного поля тока.Цель урока: проверить знания учащихся на применение закона Фарадея, определение энергии магнитного поля тока....

10 кл - урок по теме «Решение задач на применение законов Ньютона»

Здесь содержиться план урока и презентация....