Лекции. Введение. Общая экология
учебно-методический материал по экологии (8 класс)

Чувилина Анна Евгеньевна

Лекции  относится к программе "Общая экология" 

Скачать:

ВложениеРазмер
Файл lektsiya_1.docx260.03 КБ

Предварительный просмотр:

Тема 1. Введение

Определение экологии как науки о закономерностях взаимоотношений организмов с условиями окружающей среды. Содержание и задачи экологии. Основные этапы исторического развития экологии (К. Ф. Рулье, Геккель, Ч. Дарвин, Г. Ф. Морозов, В. И. Вернадский и др.). Экологические школы. Начало экологических проблем и их современное состояние (воздух, вода, растительный и животный мир, человек и др.).

Экология (от греч. «ойкос» — дом, жилище и «логос»-— учение) — наука о взаимоотношениях живых существ между собой и с окружающей их средой, о структуре и функционировании надорганизменных систем (любые объединения организмов, пример: популяции, биотические сообщества, экосистемы, биосфера).

Термин ввел в 1866 году нем. эволюционист Эрнст Геккель. Считал, что экология должна изучать различные формы борьбы за существование, по Геккелю: Экология – наука об отношении организмов к окружающей среде.

Экология как наука характеризуется наличием собственного объекта, предмета, цели, задач и методов.

Объект – часть окружающего мира, который изучается наукой, предмет – наиболее главная существенная сторона ее объекта.

Объектом экологии являются биологические системы организменного и надогранизменного уровня. Главный объект изучения в экологии экосистемы, представляющие собой единые природные комплексы, образованные живыми организмами и средой их обитания. Кроме того, в область ее компетенции входит изучение отдельных видов организмов (организменный уровень), их популяций, т. е. совокупностей особей одного вида (популяционно-видовой уровень), биотических сообществ, т.е. совокупностей популяций (биоценологический уровень) и биосферы в целом (биосферный уровень).

Предметом экологии является взамоотношения организмов и надорганизменных систем с окружающей их средой.

Цель и важнейшая проблема экологии - вывести человечество, из глобального экологического кризиса на путь устойчивого развития, при котором достигается удовлетворение жизненных потребностей нынешнего поколения без лишения такой возможности будущих поколений.

Задачи экологической науки состоят в следующем:

1. разработка теории и методов оценки устойчивости экологических систем на всех уровнях, включая биосферный.

2. исследование регуляции численности популяций, биотического разнообразия и механизмов его поддержания, регулирующего воздействия биоты на окружающую среду.

3. изучение и прогнозирование изменений биосферы под влиянием естественных (природных) и антропогенных факторов и оценка их экологических последствий.

4. оценка состояния и динамики природных ресурсов и экологических последствий их потребления.

5. разработка и совершенствование методов управления качеством окружающей среды.

6. формирование биосферного уровня мышления экологизация сознания людей, выработка норм экологической этики и морали

7. оптимизация экономических, социальных и иных решений для обеспечения экологически безопасного устойчивого развития.

8. стратегическая задача – развитие теории взаимодействия природы и общества на основе нового взгляда, рассматривающего человеческое общество как неотъемлемую часть биосферы.

Методы экологических исследований подразделяются на неспецифические (использует методы биологических и небиологических наук), специфические (пример, количественный анализ структуры и функционирования надорганизменных систем). Ее методическую основу составляет сочетание системного подхода, натурных наблюдений, эксперимента и моделирования.

Структура современной экологии.

Изначально экология развивалась как составная часть биологической науки, в тесной связи с другими естественными науками.

Общие закономерности взаимоотношений любых живых существ, включая и человека как биологическое существо, изучает наука — общая экология, в состав которой входят следующие разделы:

• аутэкология, исследующая индивидуальные связи отдельного организма (особи) с окружающей средой;

• популяционная экология (демоэкология), в задачу которой входит изучение структуры и ее динамики под действием экофакторов;

• синэкология (биоценология), изучающая взаимоотношения популяций, сообществ и экосистем со средой.

Главной целью всех этих направлений является изучение проблемы выживания живых существ в окружающей среде, и задачи перед ними стоят биологического содержания — изучить закономерности адаптации организмов и их сообществ к окружающей среде, саморегуляцию, устойчивость экосистем и биосферы в целом, и т. д.

В таком понимании общую экологию нередко называют биоэкологией.

Кроме того, экология классифицируется с точки зрения изучения экологических процессов во времени на:

• историческую;

•эволюционную,

с точки зрения изучения конкретных объектов и сред — на:

•экологию животных,

•экологию растений

• экологию микроорганизмов.

В настоящее время экология вышла за рамки сугубо биологической науки и превратилась в междисциплинарную науку, изучающую сложнейшие проблемы взаимодействия человека с окружающей средой. Тем самым экология прошла сложный и длительный путь к осознанию проблемы «человек — природа», опираясь на исследования взаимодействий в системе «организм — среда». Актуальность этой проблемы, вызванной обострением экологической обстановки в масштабах всей планеты, привела к «экологизации» всех наук и других отраслей человеческой деятельности, т. е. к обязательному учету ими законов и требований экологии. В таком качестве экологию можно разделить на две части (по Реймерсу, 1994) — теоретическую (фундаментальную) и прикладную экологию.

Теоретическая экология вскрывает общие закономерности организации жизни в экосистемах и самой биосфере как глобальной экосистеме Земли, на основе законов общей экологии, учения о биосфере и положений экологии человека. Включает разделы:

• экологию человека, изучающая человека как биологический вид, вступивший во взаимодействия с окружающей средой и социальной средой (входит психологическая экология);

социальную экологию – изучает взаимодействие в системе «человеческое общество — природа»;

• глобальную экологию –изучает крупномасштабные проблемы экологии человека и социальной экологии.

Прикладная экология изучает механизмы разрушения биосферы человеком, способы предотвращения этого процесса, разрабатывает принципы рационального природопользования на основе законов, правил и принципов фундаментальной (теоретической) экологии. Включает разделы: инженерная экология (занимается изучением и разработкой инженерных норм и средств, отвечающих экотребованиям), геоэкология (изучает взаимоотношения организмов со средой, с точки зрения их географической принадлежности), математическая экология (использует математические методы для решения экологических задач), сельскохозяйственная экология (занимается проблемами рациональной эксплуатации земельных ресурсов, повышения продуктивности их использования, получения экологически чистых продуктов), промышленная экология (изучает взаимоотношения в системе «промышленность - среда»), космическая экология (изучает взаимоотношения в системе «человек - космос», проблема космического мусора), медицинская экология (область изучения экологических условия возникновения, распространения, развития болезней человека (острых и хронических), обусловленных природными факторами и техногенными воздействиями на среду).

В XXIв. экология возведена в ранг обобщающей науки, которая включает в себя экологические направления самых различных наук (Реймерс, макроэкология).

Экология тесно связана с политикой, экономикой, правом (включая и международное право), психологией и педагогикой и г. п.

 История становления современной экологии.

Потребность в знаниях, определяющих «отношение живого к окружающей органической и неорганической среде» отражено еще в трудах Аристотеля (384—322 гг. до н. э.). С тех пор в истории развития экологических знаний можно выделить три этапа.

Первый этап — до 60-х гг. XIXв. зарождение и становление экологии как науки: накопление данных о взаимосвязи организмов со средой их обитания и до первых научных наблюдений.

- биологический (в накоплении данных участвовали только биологи),

- географический (+ географы).

В XVII—XVIIIвв. экологические сведения составили значительную долю во многих биологических описаниях (А Реомюр, А. Трамбле, Ж. Бюффон, К. Линней, И.И. Лепехин, СП. Крашенников, К.Ф. Рулье и др.). В этот же период Ж. Ламарк (1744—1829) и Т. Мальтус (1766—1834) впервые предупреждают человечество о возможных негативных последствиях воздействия человека на природу.

Второй этап — 60-е гг. XIXв. — 50-е гг.XXв. оформление экологии в самостоятельную отрасль знаний: начало этапа ознаменовалось выходом в свет работ русских ученых Н.А. Северцева (1827—1885), В.В. Докучаева (1846—1903) и, наконец, Ч. Дарвина (1809-1882) и Э. Геккеля (1834—1919).

- естественно-научный (в ихучение экопроблем внедрились физики, химики, переход от частной картины мира к естественно-научной).

Неоценимый вклад в развитие основ экологии внес труд Ч. Дарвина «Происхождение видов путем естественного отбора, или Сохранение благоприятствующих пород в борьбе за жизнь». Эта книга вышла в свет в 1859 г., но уже в 1866 г. выходит труд немецкого зоолога Э. Геккеля «Всеобщая морфология организмов», в которой биолог-эволюционист впервые показал: то, что Ч. Дарвин назвал в своей книге «борьбой за существование», есть самостоятельная и очень важная область биологии, и назвал ее экологией. Он писал: «Под экологией мы понимаем сумму знаний... о всей совокупности взаимоотношений животного с окружающей его средой, как органической, так и неорганической, и прежде всего — его дружественных или враждебных отношений с теми животными и растениями, с которыми он прямо или косвенно вступает в контакт».

1868 г. по инициативе итальянского экономиста Аурелио Печчеи в Риме собралась группа из 30 представителей наук 10 стран мира. Обсуждались трудности в экономике. Позднее получило название Римский клуб.

«Пределы роста» - Первый доклад «Римского клуба», 1972г. Построение динамической модели мира: исходные данные: население, капиталовложения, земное пространство, использование природных ресурсов и загрязнение. Прогноз: при сохранении темпов экономики и роста народонаселения человечество придет к глобальной экологической катастрофе в конце XXI века. Выход: отказ от идеологии потребительства

«Человечество на перепутье» - Второй доклад «Римского клуба». Детализируются энергетические, экологические, сырьевые прогнозы для различных регионов, предлагаются конкретные рекомендации. Вывод: стихийное развитие мира приведет его к гибели.

Как самостоятельная наука экология окончательно оформилась в начале XXстолетия. В этот период американский ученый Ч. Адаме (1913) создает первую сводку по экологии, публикуются другие важные обобщения и сводки (В. Шелфорд, 1913, 1929; Ч. Эльтон, 1927; Р. Гессе, 1924; К. Раункер, 1929 и др.), и крупнейший русский ученыйXXв. В.И. Вернадский создает фундаментальное учение о биосфере.

В 30—40-е гг. экология поднялась на более высокую ступень в результате нового подхода к изучению природных биосистем. Сначала А. Тенсли (1935) выдвинул и обосновал понятие об экосистеме, а несколько позже В.Н. Сукачев (1940) обосновал близкое этому представление о биогеоценозе. В этот же период в СССР работали такие крупные экологи, как В.В. Стачинский, Э.С. Бауэр, Г.Г. Гаузе, В.Н. Беклемишев, А.Н. Формозов, Д.Н. Кашкаров и др.

Третий этап — с 50-х гг. XXв. и до настоящего времени. Превращение экологии в комплексную науку, вобравшую в себя не только биоэкологию, но и разделы географии, геологии, физики, социологии, теории культуры и экономики (по Реймерсу, 1994), а также включившую в себя науки об охране окружающей среды.

- социогуманитарный (конец 80-х гг.) – появились исследования по осмыслению экопроблем в социогуманитарном аспекте,

- интегративный – слияние всех подходов к осмыслению экопроблем.

Современный период развития экологии связан с именами таких крупных зарубежных ученых, как Одум, Дж. М. Андерсен, А. Швейцер, Т. Миллер и др.Среди отечественных ученых следует назвать И.П. Герасимопа, A.M. Гилярова, ВТ. Горшкова, В.И. Данилов-Даниляна, и Д. Израэля, Ю.Н. Куражковского, К.С. Лосева, Н.Н. Моисева, Н.Ф. Реймерса, Ю.М. Свирижева, В.Д. Федорова, С. Шварца, А.В. Яблокова, А.Л. Яншина и др.

Одновременно с развитием теоретических основ решались и прикладные вопросы экологии. В конце XIX— началеXXвв. трудами выдающихся ученых В.В. Докучаева, Г.А. Кожевникова, И.П. Бородина, Д.Н. Анучина, СВ. Завадского и др. были множены научные основы охраны природы, которая как основной вид природоохранной деятельности получила законодательное выражение в «Декрете о земле» от 26 октября 1917 г. и в -40-е гг. в связи с ростом индустриализации страны в Россию возникает новый вид природоохранной деятельности — рациональное использование природных ресурсов, а в 50—60-е возникла необходимость создания еще одной формы, регулирующей взаимодействие общества и природы — охраны среды обитания человека.

В 60—80-е гг. практически ежегодно принимались правительсгвенные постановления об усилении охраны природы, издавались земельные, водные, лесные и иные кодексы, но антропогенное воздействие на природу продолжалось ! В 1986 г. на Чернобыльской АЭС произошла крупнейшая за всю историю человечества техногенная экологическая катастрофа.

Сегодня Россия переживает тяжелый экологический кризис. Около 15% территории — фактически зоны экологического бедствия, 85% населения дышит воздухом, загрязненным различными вредными веществами выше допустимых санитарных норм, растет количество «экологически обусловленных» заболеваний, наблюдается деградация и сокращение природных ресурсов и т. п. Выход из этого кризиса на путь устойчивого развития — важнейшая задача нашего общества.

Вопросы по пройденному материал

1. Дать определение понятию экология.

2. Что является объектом экологии.

3. Что является предметом экологии.

4. Цели и задачи экологии.

5. Структура современной экологии. Дать классификацию.

6. История развития экологии, как науки.

Тема 2. Экологические факторы

Понятие о факторах среды. Их классификация: абиотические, биотические.

Абиотические факторы. Их характеристика. Влияние на живые организмы в условиях Сахалинской области.

Биотические факторы. Определение. Классификация. Влияние на живые организмы.

Антропогенные факторы. Формы их влияния на природу. Использование и потребление человеком живых природных ресурсов (на примере Сахалинской области) возделывание растений. Приручение животных человеком. Изменение человеком природы в целом.

Климатические факторы в условиях Сахалинской области: свет, температура, влажность, давление. Роль климатических факторов в жизни живых организмов. Основные адаптации всего живого к этим факторам.

Практическая работа: Комплексное действие факторов на организм. Влияние отделяющих экологических факторов на живые организмы. Проверочные тестовые задания.

(02.09.16) 4 часа

Отдельные компоненты среды обитания, воздействующие на живые организмы, на которые они реагируют приспособительными реакциями (адаптациями), называются факторами среды, или экологическими факторами. Иначе говоря, комплекс окружающих условий, влияющих на жизнедеятельность организмов, носит название экологические факторы среды.

Все экологические факторы делят на группы:

1. Абиотические факторы включают компоненты и явления неживой природы, прямо или косвенно воздействующие на живые организмы. Среди множества абиотических факторов главную роль играют:

климатические (солнечная радиация, свет и световой режим, температура, влажность, атмосферные осадки, ветер, атмосферное давление и др.);

эдафические (механическая структура и химический состав почвы, влагоемкость, водный, воздушный и тепловой режим почвы, кислотность, влажность, газовый состав, уровень грунтовых вод и др.);

орографические (рельеф, экспозиция склона, крутизна склона, перепад высот, высота над уровнем моря);

гидрографические (прозрачность воды, текучесть, проточность, температура, кислотность, газовый состав, содержание минеральных и органических веществ и др.);

химические (газовый состав атмосферы, солевой состав воды);

пирогенные (воздействие огня).

2. Биотические факторы — совокупность взаимоотношений живых организмов, а также их взаимовлияний на среду обитания. Действие биотических факторов может быть не только непосредственным, но и косвенным, выражаясь в корректировке абиотических факторов (например, изменение состава почвы, микроклимата под пологом леса и т.д.). К биотическим факторам относятся:

фитогенные (влияние растений друг на друга и на окружающую среду);

зоогенные (влияние животных друг на друга и на окружающую среду).

3. Антропогенные факторы отражают интенсивное влияние человека (непосредственно) или человеческой деятельности (опосредованно) на окружающую среду и живые организмы. К таким факторам относятся все формы деятельности человека и человеческого общества, которые приводят к изменению природы как среды обитания и других видов и непосредственно сказываются на их жизни. Каждый живой организм испытывает влияние неживой природы, организмов других видов, в том числе человека, и в свою очередь оказывает воздействие на каждую из этих составляющих.

Влияние антропогенных факторов в природе может быть как сознательным, так и случайным, или неосознанным. Человек, распахивая целинные и залежные земли, создает сельскохозяйственные угодья, выводит высокопродуктивные и устойчивые к заболеваниям формы, расселяет одни виды и уничтожает другие. Эти воздействия (сознательные) часто носят отрицательный характер, например необдуманное расселение многих животных, растений, микроорганизмов, хищническое уничтожение целого ряда видов, загрязнение среды и др.

К случайным относятся воздействия, которые происходят в природе под влиянием деятельности человека, но не были заранее предусмотрены и запланированы им: распространение вредителей, паразитов, случайный завоз различных организмов с грузом, непредвиденные последствия, вызванные сознательными действиями в природе, например осушением болот, постройкой плотин, распашкой целины и др.

Биотические факторы среды проявляются через взаимоотношения организмов, входящих в одно сообщество. В природе многие виды тесно взаимосвязаны, их отношения друг с другом как компонентами окружающей среды могут носить чрезвычайно сложный характер. Что касается связей между сообществом и окружающей неорганической средой, то они всегда являются двусторонними, обоюдными. Так, характер леса зависит от соответствующего типа почв, но сама почва в значительной мере формируется под влиянием леса. Подобно этому температура, влажность и освещенность в лесу определяются растительностью, но сформировавшиеся климатические условия в свою очередь влияют на сообщество обитающих в лесу организмов.

Воздействие среды обитания воспринимается организмами через посредство факторов среды, называемых экологическими. Следует отметить, что экологическим фактором является только изменяющийся элемент окружающей среды, вызывающий у организмов при своем повторном изменении ответные приспособительные эколого-физиологические реакции, наследственно закрепляющиеся в процессе эволюции. Они подразделяются на абиотические, биотические и антропогенные (рис. 1).

Абиотическими факторами называют всю совокупность факторов неорганической среды, влияющих на жизнь и распространение животных и растений. Среди них различают: физические, химические и эдафические.

Физические факторы - те, источником которых служит физическое состояние или явление (механическое, волновое и др.). Например, температура.

Химические факторы — те, которые происходят от химического состава среды. Например, соленость воды, содержание кислорода и т.п.

Эдафические (или почвенные) факторы представляют собой совокупность химических, физических и механических свойств почв и горных пород, оказывающих воздействие как на организмы, для которых они являются средой обитания, так и на корневую систему растений. Например, влияние биогенных элементов, влажности, структуры почвы, содержание гумуса и т.п. на рост и развитие растений.

Биотические факторы - совокупность влияний жизнедеятельности одних организмов на жизнедеятельность других (внутривидовые и межвидовые взаимодействия), а также на неживую среду обитания. Пример: внутривидовая конкуренция за места гнездований, за площадь расселения в округе; межвидовые взаимодействия — нейтрализм, конкуренция, паразитизм, хищничество и др. Примером воздействия биотических факторов на неживую природу может служить особый лесной микроклимат или микросреда, где по сравнению с открытым местообитанием создается свой режим температур и влажности: зимой здесь теплее, летом — прохладнее и более влажно.

http://www.grandars.ru/images/1/review/id/3903/a6547c6037.jpg

Рис. 1. Схема воздействия среды обитания (окружающей среды) на организм

Антропогенные факторы — факторы деятельности человека, воздействующие на окружающую природную среду (загрязнение атмосферы и гидросферы, эрозия почв, уничтожение лесов и т.п.).

Лимитирующими (ограничивающими) экологическими факторами называют такие факторы, которые ограничивают развитие организмов из-за недостатка или избытка питательных веществ по сравнению с потребностью (оптимальным содержанием).

Так, при выращивании растений при различных температурах точка, при которой наблюдается максимальный рост, и будет оптимумом. Весь интервал температур, от минимальной до максимальной, при которых еще возможен рост, называют диапазоном устойчивости (выносливости), или толерантности. Ограничивающие его точки, т.е. максимальная и минимальная пригодные для жизни температуры, — пределы устойчивости. Между зоной оптимума и пределами устойчивости по мере приближения к последним растение испытывает все нарастающий стресс, т.е. речь идет о стрессовых зонах, или зонах угнетения, в рамках диапазона устойчивости (рис. 2). По мере удаления от оптимума вниз и вверх по шкале не только усиливается стресс, но по достижении пределов устойчивости организма происходит его гибель.

http://www.grandars.ru/images/1/review/id/3903/880e8b6362.jpg

Рис. 2. Зависимость действия экологического фактора от его интенсивности

Таким образом, для каждого вида растений или животных существуют оптимум, стрессовые зоны и пределы устойчивости (или выносливости) в отношении каждого фактора среды обитания. При значении фактора, близкого к пределам выносливости, организм обычно может существовать лишь непродолжительное время. В более узком интервале условий возможно длительное существование и рост особей. Еще в более узком диапазоне происходит размножение, и вид может существовать неограниченно долго. Обычно где-то в средней части диапазона устойчивости имеются условия, наиболее благоприятные для жизнедеятельности, роста и размножения. Эти условия называют оптимальными, в которых особи данного вида оказываются наиболее приспособленными, т.е. оставляют наибольшее число потомков. На практике выявить такие условия сложно, поэтому оптимум обычно определяют отдельные показатели жизнедеятельности (скорость роста, выживаемость и т.п.).

Адаптация состоит в приспособлении организма к условиям среды обитания.

Способность к адаптациям — одно из основных свойств жизни вообще, обеспечивающее возможность ее существования, возможность организмов выживать и размножаться. Адаптации проявляются на разных уровнях — от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экологических систем. Все приспособления организмов к существованию в различных условиях выработались исторически. В результате сформировались специфические для каждой географической зоны группировки растений и животных.

Адаптации могут быть морфологическими, когда меняется строение организма вплоть до образования нового вида, и физиологическими, когда происходят изменения в функционировании организма. К морфологическим адаптациям близко примыкает приспособительная окраска животных, способность менять ее в зависимости от освещенности (камбала, хамелеон и др.).

Широко известны примеры физиологической адаптации — зимняя спячка животных, сезонные перелеты птиц.

Весьма важными для организмов являются поведенческие адаптации. Например, инстинктивное поведение определяет действие насекомых и низших позвоночных: рыб, земноводных, пресмыкающихся, птиц и др. Такое поведение генетически запрограммировано и передается по наследству (врожденное поведение). Сюда относится: способ построения гнезда у птиц, спаривание, выращивание потомства и др.

Существует также и приобретенное повеление, полученное индивидом в процессе его жизни. Обучение (или научение) - главный способ передачи приобретенного поведения от одного поколения к другому.

Способность индивида управлять своими познавательными способностями, чтобы выжить при неожиданных изменениях среды обитания, является интеллектом. Роль научения и интеллекта в поведении возрастает с совершенствованием нервной системы — увеличением коры головного мозга. Для человека — это определяющий механизм эволюции. Свойство видов адаптироваться к тому или иному диапазону факторов среды обозначается понятием экологическая мистичность вида.

Экологические факторы обычно действуют не по одному, а комплексно. Действие одного какого-либо фактора зависит от силы воздействия других. Сочетание разных факторов оказывает заметное влияние на оптимальные условия жизни организма (см. рис. 2). Действие одного фактора не заменяет действие другого. Однако при комплексном воздействии среды часто можно наблюдать «эффект замещения», который проявляется в сходстве результатов воздействия разных факторов. Так, свет не может быть заменен избытком тепла или обилием углекислого газа, но, воздействуя изменениями температуры, можно приостановить, например фотосинтез растений.

В комплексном влиянии среды воздействие различных факторов для организмов неравноценно. Их можно подразделить на главные, сопутствующие и второстепенные. Ведущие факторы различны для разных организмов, если даже они живут в одном месте. В роли ведущего фактора на разных этапах жизни организма могут выступать то одни, то другие элементы среды. Например, в жизни многих культурных растений, таких, как злаки, в период прорастания ведущим фактором является температура, в период колошения и цветения — почвенная влага, в период созревания — количество питательных веществ и влажность воздуха. Роль ведущего фактора в разное время года может меняться.

Ведущий фактор может быть неодинаков у одних и тех же видов, живущих в разных физико-географических условиях.

Понятие о ведущих факторах нельзя смешивать с понятием о лимитирующих факторах. Фактор, уровень которого в качественном или количественном отношении (недостаток или избыток) оказывается близким к пределам выносливости данного организма, называется лимитирующим. Действие лимитирующего фактора будет проявляться и в том случае, когда другие факторы среды благоприятны или даже оптимальны. Лимитирующими могут выступать как ведущие, так и второстепенные экологические факторы.

Понятие лимитирующих факторов было введено в 1840 г. химиком 10. Либихом. Изучая влияние на рост растений содержания различных химических элементов в почве, он сформулировал принцип: «Веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последнего во времени». Этот принцип известен под названием закона минимума Либиха.

Закон минимума Либиха относится ко всем влияющим на организм абиотическим и биотическим факторам. Это может быть, например, конкуренция со стороны другого вида, присутствие хищника и паразита. Сформулированный закон действует как в отношении растений, так и животных.

Лимитирующим фактором может быть не только недостаток, на что указывал Либих, но и избыток таких факторов, как, например, тепло, свет и вода. Как отмечалось ранее, организмы характеризуются экологическим минимумом и максимумом. Диапазон между этими двумя величинами принято называть пределами устойчивости, или толерантности.

В общем виде всю сложность влияния экологических факторов на организм отражает закон толерантности В. Шелфорда: отсутствие или невозможность процветания определяется недостатком или, наоборот, избытком любого из ряда факторов, уровень которых может оказаться близким к пределам, переносимым данным организмом (1913 г.). Эти два предела называют пределами толерантности.

По «экологии толерантности» были проведены многочисленные исследования, благодаря которым стали известны пределы существования многих растений и животных. Таким примером является влияние загрязняющего атмосферный воздух вещества на организм человека (рис. 3).

http://www.grandars.ru/images/1/review/id/3903/aa3e647f7f.jpg

Рис. 3. Влияние загрязняющего атмосферный воздух вещества на организм человека. Макс — максимальная жизненная активность; Доп — допустимая жизненная активность; Опт — оптимальная (не влияющая на жизненную активность) концентрация вредного вещества; ПДК — предельно допустимая концентрация вещества, существенно не изменяющая жизненную активность; Лет — летальная концентрация

Концентрация влияющего фактора (вредного вещества) на рис. 5.2 обозначена символом С. При значениях концентрации С = Слет человек погибнет, но необратимые изменения в его организме произойдут при значительно меньших значениях С = Спдк. Следовательно, диапазон толерантности ограничивается именно значением Спдк= Слим. Отсюда, Спдк необходимо определить экспериментально для каждого загрязняющего или любого вредного химического соединения и не допускать превышения его Сплк в конкретной среде обитания (жизненной среде).

В охране окружающей среды важны именно верхние пределы устойчивости организма к вредным веществам.

Таким образом, фактическая концентрация загрязняющего вещества Сфакт не должна превышать Спдк (Сфакт ≤ Спдк = Слим).

Ценность концепции лимитирующих факторов (Слим) состоит в том, что она дает экологу отправную точку при исследовании сложных ситуаций. Если для организма характерен широкий диапазон толерантности к фактору, отличающемуся относительным постоянством, и он присутствует в среде в умеренных количествах, то такой фактор вряд ли является лимитирующим. Наоборот, если известно, что тот или иной организм обладает узким диапазоном толерантности к какому-то изменчивому фактору, то именно этот фактор и заслуживает внимательного изучения, так как он может быть лимитирующим.

Вопросы.

  1. Дать определение, что такое экологические факторы.
  2. Классификация экологических факторов среды.  Их общая характеристика.
  3. Дать общую характеристику климатическим факторам в условиях Сахалинской области: свет, температура, влажность, давление. Роль климатических факторов в жизни живых организмов. Основные адаптации всего живого к этим факторам.

Практическая работа: Комплексное действие факторов на организм. Влияние отделяющих экологических факторов на живые организмы. Проверочные тестовые задания.

(19.09.16) 1,5 часа

Тест.

Тема «Экологические факторы. Условия среды»

Часть I.

Выберите один правильный ответ

1. Все компоненты природной среды, влияющие на состояние организмов, называют факторами:

а) абиотическими

б) биотическими

в) экологическими

2. Соответствие между организмами и средой их обитания проявляется в такой форме:

а) строение ласта морских млекопитающих

б) длинная шерсть у домашней кошки

в) высокая молочная продуктивность у коров

3. Антропогенный фактор - это:

а) воздействие на организмы, популяции, сообщества растений и животных

б) воздействие света, воды на организмы, популяции, сообщества;

в) изменение среды обитания и самих организмов, популяций, сообществ под влиянием деятельности человека.

4. К экологическим факторам относятся:

а) абиотические

б) биотические

в) антропогенные

г) верны все ответы

5. К биотическому фактору относится:

а) свет

б) влажность

в) состав почвы

г) паразитизм

6. Косвенное влияние на организмы оказывает:

а) свет

б) рельеф

в) тепло

г) влажность

7. Строительство плотины можно рассматривать как пример фактора:

а) абиотического

б) биотического

в) антропогенного

г) вообще не экологического

8. Опыление растений насекомыми это пример фактора:

а) абиотического

б) биотического

в) антропогенного

9. К абиотическим факторам относятся:

а) свет и ветер

б) паразитизм и хищничество

в) влажность и загрязнение

г) состав почвы и симбиоз

10. Изменяющиеся во времени и пространстве абиотические факторы среды называются:

а) абиотическими условиями

б) биотическими условиями

в) экологическими условиями

г) антропогенными условиями

11.* В процессе окисления жиров воду получает

а) платяная моль и верблюд

б) корова и собака

в) пшеница и береза

г) бабочка и паук

12.* Экологические факторы, оказывающие наибольшее влияние на численность современных пресмыкающихся:

а) абиотические

б) биотические

в) антропогенные.

г) абиотические и биотические

13.* Какой продукт человеческой деятельности будет дольше всего перерабатываться в круговороте веществ:

а) бумага

б) полиэтилен

в) жесть

г) ткань хлопчатобумажная

14.* В условиях урбанизации происходят следующие изменения абиотических факторов:

а) повышение температуры и скорости ветра

б) снижение температуры и скорости ветра

в) повышение температуры и кислотности

г) снижение температуры и кислотности

15.* Температура остается постоянной в среде:

а) почвенной

б) водной

в) наземно-воздушной

г) нет правильного ответа

16.* Наиболее вредное воздействие на живые организмы может оказывать

а) инфракрасное излучение

б) излучение в сине-зеленой части спектра

в) излучение в желто-красной части спектра

г) ультрафиолетовое излучение

17.* К абиотическим факторам окружающей среды относят:

а) рельеф, климат, температуру, свет, влажность, соленость воды

б) растительный опад, минеральный состав почвы, влажность

в) соленость воды, отмершие части водных растений и останки животных, свет

г) газовый состав атмосферы, загрязнение почвы, воздуха и воды промышленными отходами

18.* К биотическим факторам окружающей среды относят:

а) растительный опад, минеральный состав почвы, влажность

б) соленость воды, отмершие части водных растений и останки животных, свет

в) гибель растений и животных от инфекций, вызванных микроорганизмами

г) газовый состав атмосферы, загрязнение почвы, воздуха и воды промышленными отходами

19.* К антропогенным факторам окружающей среды относят:

а) соленость воды, минеральный состав почвы и газовый состав атмосферы

б) растительный опад, влажность, влажность, соленость воды

в) гибель растений и животных от инфекций, вызванных микроорганизмами

г) загрязнение почвы, воздуха и воды промышленными отходами

Часть II.

Выберите правильные суждения

1. Пределы температурной выносливости у различных организмов одинаковы.

2. Вода – составная часть каждого живого организма.

3. Свет Солнца служит единственным источником энергии для живой природы.

4. Среди животных наибольший диапазон температур выдерживают земноводные.

5. Экологические факторы могут оказывать как непосредственное, так и косвенное влияние на организмы.

6. Свет служит сигналом к перестройке протекающих в организме процессов, что позволяет им наилучшим образом отвечать на происходящие изменения внешних условий.

7. Любой экологический фактор имеет определенные пределы положительного влияния на живые организмы.

8. Ветер оказывает непосредственное влияние на организмы.

9. Загрязняющие вещества не могут передаваться по цепям питания

10. Загрязнение природы приводит к снижению видового разнообразия и нарушению устойчивости биоценозов.

Тест 2.

Тема «Общие закономерности влияния экологических факторов на организмы»

Часть I.

Выберите один правильный ответ

1. Закон минимума был сформулирован:

а) Ю. Либихом

б) В. Докучаевым

в) В. Вернадским

г) А. Опариным

2. Ограничивающие факторы для популяции могут быть связаны с недостатком:

а) воды

б) тепла

в) пищи

г) со всеми этими факторами

3. Толерантность - это способность организмов:

а) выдерживать изменения условий жизни

б) приспосабливаться к новым условиям

в) образовывать локальные формы

г) приспосабливаться к строго определенным условиям

4. Какие из абиотических факторов лимитируют распространение жизни в океане, но обычно не лимитируют распространение жизни на суше?

а) минералы, азот

б) минералы, кислород

в) свет, азот

г) свет, кислород

5. Популяция, которая занимает в составе биоценоза определенное положение, называется:

а) жизненной формой

б) экологической нишей

в) экотипом

г) ареалом

6.* Действие экологических факторов на живые организмы в качестве раздражителей:

а) вызывает приспособительные изменения у организмов

б) обусловливает невозможность существования организмов в данных условиях

в) вызывает структурно-функциональные изменения у организмов

г) свидетельствуют об изменениях других факторов среды

7.* Наиболее эффективно проявляется действие экологического фактора на организм при его значениях;

а) минимальных

б) максимальных

в) оптимальных

г) минимальных и максимальных

8.* Экологические факторы воздействуют на живые организмы:

а) одновременно и совместно друг с другом

б) одновременно и изолированно друг от друга

в) совместно друг с другом, но в определённой последовательности

г) изолированно друг от друга и в определённой последовательности

9.* Экологические факторы, ограничивающие распределение живых организмов в условиях тундры;

а) недостаток тепла

б) недостаток влаги и тепла

в) недостаток пищи и влаги

г) избыток влаги и недостаток пищи

10.* Экологические факторы, ограничивающие распространение живых организмов в условиях пустыни;

а) избыток тепла

б) недостаток влаги и пищи

в) избыток тепла и недостаток пищи

г) отсутствие почвы и недостаток пищи

Часть II.

Выберите правильные суждения 

1. Толерантность особи остается неизменной в течение всей жизни.

2. Высокая специализация организмов - это приспособленность к строго определенным условиям.

3. Организмы с широким диапазоном толерантности, как правило, имеют больше шансов в борьбе за существование.

4. Любой фактор, влияющий на живые организмы, может стать либо оптимальным, либо ограничивающим, в зависимости от силы своего воздействия.

5. Плавная кривая соответствует узкому диапазону толерантности.

6. Любой организм может существовать лишь в определенном температурном интервале.

7. Лимитирующим фактором для организмов всегда является температура.

8. Экотипы характеризуются различными границами стойкости к температуре, свету или другим факторам.

9. Кривая толерантности имеет форму гиперболы.

10. Успешное выживание живых организмов зависит от комплекса условий.

11. Экологические факторы оказывают постоянное воздействие на живые организмы, но действуют изолированно друг от друга.

12. Интенсивность экологического фактора, наиболее благоприятную для жизнедеятельности организма, называют биологическим оптимумом.

13. Пределы чувствительности организмов к отклонению от оптимума по какому-либо из факторов не зависят от интенсивности действия других факторов.

14. Существование каждого вида ограничивается тем из факторов, который наиболее отклоняется от оптимума.

Ключ к тестовым заданиям

Тест 1.  

Часть I

1В, 2А, 3В, 4Г, 5Г, 6Б, 7В, 8Б, 9А, 10В, 11А, 12В, 13Б, 14В, 15Г, 16Г, 17А, 18В, 19Г

Часть II

2, 3, 5, 6, 7, 10

Тест 2.  

Часть I

1А, 2Г, 3А, 4Г, 5Б, 6А, 7В, 8А, 9А, 10Б

Часть II

2, 3, 4, 6, 8, 10, 12, 14

Тема 3. Среды жизни

Понятие о среде жизни. Основные среды жизни: водная, почва как среда жизни, живые организмы как среда обитания, наземно-воздушная среда. Эволюция сред. Основные адаптации организмов.

Практическая работа: Составление экологической характеристики одного представителя растения или животных (по выбору учащегося). Приспособление растения или животного к одной из сред жизни (по выбору). Проверочные тестовые задания.

(04.10.2016) 4 часа

Среда жизни – одно из основных экологических понятий, под которым понимается комплекс окружающих условий, влияющих на жизнедеятельность организмов (особи, популяции, сообщества). У каждой особи своя особая среда жизни: физические, химические и биотические условия, не выходящие за пределы чувствительности и устойчивости к ним данного вида.

Термин «среда» в экологии применяется в широком и узком смысле слова.

В широком смысле среда – это окружающая среда.

Окружающая среда – это совокупность всех условий жизни (материальных тел, явлений, энергии влияющих на организм) существующих на планете Земля.

Среда – в узком смысле слова – это среда обитания.

Среда обитания – это часть природы, которая окружает организм и с которой он непосредственно взаимодействует. Среда обитания каждого организма многообразна и изменчива. Она слагается из множества элементов живой и неживой природы, а также элементов, привносимых человеком в результате хозяйственной деятельности.

Следовательно: совокупность природных условий и явлений, окружающих живые организмы, с которыми эти организмы находятся в постоянном взаимодействии, называется средой обитания.

Роль среды двояка. Прежде всего, живые организмы получают из среды, в которой обитают, пищу и энергию. Кроме того, различные среды ограничивают распространение организмов по земному шару.

Выделяют четыре основные среды обитания, освоенные живыми организмами: 1)водная

2)наземно-воздушная

3)почвенная

 4) живые организмы - заселенные паразитами и симбионтами.

Водная среда (гидросфера) - занимает 71% площади земного шара. В водной среде обитают 150 тыс. видов животных, что составляет около 7% от общего их количества, 10 тыс. видов растений (8% от общего их количества). Реки, озера создают запас пресной воды, необходимый для огромного количества растений и животных, а также для человека. Как среда обитания вода имеет ряд специфических особенностей: большая плотность, сильные перепады давления, малое содержание кислорода, сильное поглощение солнечных лучей и т.д. Характерной чертой водной среды является ее подвижность. Движение воды обеспечивает снабжение водных организмов кислородом и питательными веществами, приводит к выравниванию температуры во всем водоеме, т.к. вода обладает высокой теплоемкостью и теплопроводностью и считается наиболее стабильной по экологическим условиям средой, без резких колебаний температур. В воде кислорода в 20 раз меньше, чем в атмосфере, и здесь он является лимитирующим фактором.

Число видов животных и растений в водной среде значительно меньше, чем наземных, что говорит о том, что эволюция на суше проходила гораздо быстрее. Наиболее богатый растительный и животный мир морей и океанов тропических областей – Тихого и Атлантического океанов. Основная масса организмов Мирового океана сосредоточена в сравнительно небольшой по площади зоне морских побережий умеренного пояса.

В Мировом океане толща воды носит название «пелигиаль», дно – «бенталь», береговая часть – «литораль», она наиболее богата растениями и животными. Обитатели водной среды называются гидробионтами. Пелагические организмы – нектон (рыбы, китообразные) и планктон (низшие ракообразные, одноклеточные водоросли и др.), а обитатели дна – бентос (придонные водоросли, рыбы). Одной из специфических особенностей водной среды является наличие большого количества мелких частиц органического вещества – детрита (высококачественная пища для водных организмов).

Обитатели водоемов выработали соответствующие приспособления к подвижности водной среды, в частности, обтекаемую форму тела, способность дышать растворенным в воде кислородом при помощи жабр и др.

Водная среда оказывает влияние на ее обитателей. В свою очередь, живое вещество гидросферы воздействует на среду обитания, перерабатывает ее, вовлекая в круговорот веществ. Известно, что вода всех видов водоемов разлагается и восстанавливается в биотическом круговороте за 2 млн. лет, т.е. вся она прошла через живое вещество планеты не одну тысячу раз.

Наземно-воздушная среда - Наземная среда самая сложная по экологическим условиям. Экологические факторы здесь отличаются рядом специфических особенностей: сильные колебания температур, более интенсивный свет, меняющаяся влажность в зависимости от сезона года, времени суток и географического положения.

Особенностью этой среды является то, что организмы, обитающие здесь, окружены воздухом – газообразной средой, характеризующейся низкой влажностью, плотностью, давлением, а также высоким содержанием кислорода.

Воздушная среда имеет малые плотности и подъемную силу, незначительную опорность, поэтому в ней нет постоянно живущих организмов — все они связаны с землей, а воздушную среду используют только для перемещения или (и) для поиска добычи. Воздушная среда оказывает на организмы физическое и химическое воздействие.

Физические факторы воздушной среды: движение воздушных масс обеспечивает расселение семян, спор и пыльцы растений. Атмосферное давление оказывает существенное влияние на жизнь позвоночных животных — они не могут жить выше 6000 м над уровнем моря.

Химические факторы воздушной среды обусловлены однородным в качественном и количественном отношении составом атмосферы: в наземных условиях содержание кислорода находятся в максимуме, а углекислого газа — в минимуме толерантности растений, в почве — наоборот — кислород становится лимитирующим фактором для аэробов - редуцентов, что замедляет разложение органики.

У обитателей наземной среды в процессе эволюции выработались специфические анатомо-морфологические, физиологические, поведенческие адаптации. У них в ходе эволюции появились органы, обеспечивающие непосредственное усвоение атмосферного кислорода в процессе дыхания (устьица растений, легкие у животных), сложные приспособления для защиты от неблагоприятных факторов (защитный покров тела, механизмы терморегуляций, большая подвижность, периодичность и ритмика жизненных циклов и др.).

Почвенная среда. Почва представляет собой сложную трехфазную систему, в которой твердые частицы окружены воздухом и водой. Почва обладает также своеобразными биологическими особенностями, поскольку она тесно связана с жизнедеятельностью организмов. Все свойства почвы во многом зависят не только от климатических факторов, но и от жизнедеятельности почвенных организмов, которая механически перемешивает ее и перерабатывает химически, создавая в конечном итоге необходимые для себя условия. Свойства почвы в своей совокупности создают определенный экологический режим, основными показателями которого служат гидротермические факторы и аэрация. Хорошо увлажненная почва легко прогревается и медленно остывает.

Всех почвенных обитателей можно разделить на экологические, исходя из размеров степени подвижности: микробиотоп, мезобиота, макробиотоп, макробиота.

По степени связи со средой: геобионты, геофилы, геоксены.

Живые организмы. Как известно, для растений и животных, ведущих симбиотический образ жизни, организм, на котором они поселяются (хозяин), является специфичной средой жизни. Это явление подробно изучили отечественные ученые Е.Н. Павловский и В.А. Догель на примерах паразитизма и мутуализма, а также других форм совместной жизни организмов. Поскольку любой организм зависит от условий среды и сам на нее воздействует, паразит не только зависит от хозяина, но и влияет на него. У хозяина в результате вырабатываются самые различные защитные реакции. Паразиты же, в свою очередь, приспосабливаются к этим реакциям, и, таким образом, процесс коадаптации, взаимного приспособления паразита к хозяину и, наоборот, хозяина к паразиту осуществляется постоянно.

Взаимодействия организма со средой, лимитирующий фактор.

Живой организм всецело зависит от среды и немыслим без неё. В природе на любой организм сразу действует множество абиотических и биотических факторов, они тесно взаимосвязаны и не могут заменять друг друга. Экологические факторы могут оказывать как прямое, так и косвенное воздействие на организм, а также действуют с разной интенсивностью.

Интенсивность экологического фактора, наиболее благоприятная для жизнедеятельности организма называется оптимальной, или Оптимумом.

Сочетание условий среды, обеспечивающее наиболее успешный рост, развитие и размножение вида (популяции) называют Биологическим оптимумом.

Часто в природе бывает так, что одни экологические факторы находятся в изобилии (например, вода и свет), а другие (например, азот) - в недостаточных количествах. Факторы, снижающие жизнеспособность организма, называют ограничивающими (лимитирующими). Например, ручьевая форель живет в воде с содержанием кислорода не менее 2 мг/л. При содержании в воде кислорода менее 1,6 мг/л форель гибнет. Кислород - ограничивающий фактор для форели. Ограничивающим фактором может быть не только его недостаток, но и избыток. Тепло, например, необходимо всем растениям. Однако если продолжительное время летом стоит высокая температура, то растения даже при увлажненной почве могут пострадать из-за ожогов листьев. Следовательно, для каждого организма существует наиболее подходящее сочетание абиотических и биотических факторов, оптимальное для его роста, развития и размножения. Наилучшее сочетание условий называют биологическим оптимумом. Выявление биологического оптимума, знание закономерностей взаимодействия экологических факторов имеют большое практическое значение. Умело поддерживая оптимальные условия жизнедеятельности сельскохозяйственных растений и животных, можно повышать их продуктивность.

Чем больше отклонения от оптимума, тем губительнее действует экологический фактор на организм.

Диапазон действия экологического фактора имеет границы – максимум и минимум. Максимальное и минимальное значения экологического фактора, при которых ещё возможна жизнь, называют пределом выносливости (нижние и верхние границы выносливости).

Способность организмов выдерживать определенные колебания экологических факторов, приспосабливаться к новым условиям и осваивать разные среды обитания называется экологической валентностью (толерантностью). 

ТОЛЕРАНТНОСТЬ – это способность организмов выдерживать определенный диапазон изменения условий жизни.

Виды организмов с низкой толерантностью (живущие в узком диапазоне действия экологических факторов) называются СТЕНОБИОТНЫМИ, а с широкой толерантностью – ЭВРИБИОТНЫМИ. 

Экологическая амплитуда – это ширина диапазона колебаний экологического фактора, например: температура от -50 до +50.

При помещении организма в новые условия он через некоторое время адаптируется к ним, следствием этого является изменение физиологического оптимума, или сдвиг купола толерантности.

Такие сдвиги называются АДАПТАЦИЕЙ или Акклиматизацией.

Лимитирующий фактор (ограничивающий) – это фактор, интенсивность действия которого выходит за пределы выносливости организма.

Иначе говоря, тот фактор, который является ведущим в ограничении приспособительных возможностей организма в конкретной среде, называется – лимитирующим. 

Например, на Севере лимитирующим фактором является низкая температура, а в пустыне – вода. Именно лимитирующие факторы ограничивают распространение видов в природе.

http://textarchive.ru/images/1066/2131787/m6b88f557.png

Кривая толерантности

Например, температура является важнейшим лимитирующим (ограничивающим) фактором. Для любого вида пределами толерантности служат максимальная и минимальная летальные температуры, за их пределами вид погибает от холода или жары. Живые организмы могут жить при температуре от 0 до 50С за некоторым исключением. При оптимальных значениях температуры (оптимальный интервал) организмы чувствуют себя комфортно, размножаются, наблюдается рост численности популяции. При возрастании жары в пределах верхней границы стойкости и похолодании в пределах нижней границы стойкости организмы попадают в зону смерти и погибают. Данный пример иллюстрирует общий закон биологической стойкости, который применим к важным лимитирующим факторам. Оптимальный интервал характеризует стойкость организмов (толерантность к этому фактору) или экологическую валентность.

http://textarchive.ru/images/1066/2131787/m53bb2763.gif

В середине ХIХ в. Ю. Либихом был установлен закон минимума: урожай зависит от фактора, находящегося в минимуме. Например, если фосфор содержится в почве лишь в минимальных количествах, то это снижает урожай. Но оказалось, что если это же вещество находится в избытке, это также снижает урожай.

Следовательно, закон толерантности В.Шельфорда (1913) гласит: ограничивающим фактором жизни организма может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет величину выносливости организма к этому фактору. Этот закон справедлив и в отношении информации.

Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы в ходе эволюции у организмов выработались адаптации к их воздействию.

Адаптация организмов к факторам среды

Адаптация – приспособление организма к среде обитания. Способность к адаптации – одно из основных свойств жизни, так как обеспечивает саму возможность ее существования, возможность организмов выживать и размножаться в конкретных условиях среды. Она сформировалась под воздействием трех основных факторов – изменчивости, наследственности и естественного отбора.

Адаптация проявляется на разных уровнях: от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экологических систем.

Основные механизмы адаптации на уровне организма:

1) биохимические – проявляются во внутриклеточных процессах, например, изменение активности работы клеток или синтеза ферментов, гормонов;

2) физиологические (усиление потоотделения при повышении температуры у ряда видов);

3) морфологические – особенности строения и формы тела, связанные с образом жизни, средой обитания;

4) поведенческие – поиск животными благоприятных мест обитания, создание нор, гнезд, миграция и др.;

5) онтогенетические – ускорение или замедление индивидуального развития, способствующее выживанию при изменении условий.

Вопросы.

  1. Что такое среда обитания.
  2. Перечислите среды обитания.  Дайте общую характеристику.

Практическая работа: Составление экологической характеристики одного представителя растения или животных (по выбору учащегося). Приспособление растения или животного к одной из сред жизни (по выбору). Проверочные тестовые задания.

(24.10.16) 1 час

Тема 4. Биотические отношения

Понятия о биотических отношениях. Типы биотических отношений организмов. Взаимно-полезные (симбиоз). Полезно-вредные (хищник-жертва, паразит-хозяин). Нейтральные. Взаимно-вредные (конкуренция). Значение биотических отношений  в природе. На примере острова Сахалин.

Практическая работа: Определение типов биотических отношений по гербарным материалам, коллекциям, чучелам, открыткам и др.

(8.11.16) 3 часа

Биотическими факторами называют все виды взаимодействий, которые оказывают друг на друга живые организмы в биоценозах. Непосредственное живое окружение организмов в сообществе составляет их биотическую среду.

Биотические факторы делят на внутривидовые и межвидовые.

Для гетеротрофных организмов к биотическим относят факторы питания — количество и качество пищи. Факторы питания являются важнейшими для организмов и наиболее часто определяют их численность в экосистемах.

Эффекты взаимного влияния организмов друг на друга определяются:

– видовым составом биоценоза;

– морфологическими, физиологическими и поведенческими особенностями видов;

– плотностью и структурой их популяций.

Связи, посредством которых организмы взаимодействуют между собой, называются биотическими связями.

Видами биотических связей являются:

1) трофические (от греч. trophe — питание), при которых одни организмы или их мертвые остатки служат пищей для других;

2) топические (от греч. topos — место), когда одни организмы являются местом (средой) обитания для других или когда своей жизнедеятельностью изменяют среду обитания других организмов. Например, деревья, затеняя землю, подавляют рост трав; человек, вырубая леса, лишает местообитания всех его обитателей, и т. д.;

3) форические, при которых одни организмы участвуют в распространении других — их спор, семян, личинок или взрослых форм;

4) фабрические (от лат. fabricos — производить), при которых один вид использует тела организмов другого вида для строительства своих сооружений.

Объединение в группы облегчает организмам добывание пищи, защиту от врагов, переживание неблагоприятных условий. Например, стаи волков могут убить более крупную дичь; стада копытных — успешно обороняться от хищников; пингвины и пчелы, сбиваясь в кучи, спасаются от мороза и т. д.

В группах животных наблюдаются явления кооперации — разделения функций внутри группы и иерархии — подчиненности одних особей другим (львиный прайд)). Разделение функций позволяет группе экономить энергию, которая может идти на другие цели.

Классификация межвидовых взаимодействий

Эффекты взаимодействий организмов, относящихся к разным видам на:

– нейтральные (0);

– положительные (+);

– отрицательные (-).

Возможны следующие варианты их сочетаний (таблица 1).

Таблица 1 Типы межвидовых взаимодействий

 

Тип взаимодействия

Виды

Характер взаимодействий

вид 1

вид 2

Нейтрализм

0

0

Виды в биоценозе прямо не влияют друг на друга

Комменсализм

+

0

Выгоду имеет один вид

Кооперация (сотрудничество)

+

+

Выгоду имеют оба вида, но их взаимодействие не является обязательным

Мутуализм

+

+

Взаимодействие благоприятно для обоих видов и обязательно для их существования

Аменсализм

 

0

-

Один вид односторонне подавляет другой

 

Конкуренция

-

-

Оба вида взаимно подавляют друг друга

 

Отношения «жертва — эксплуататор»:

 

 

 

 

«хищник — жертва»

 

+

-

Хищники ловят и потребляют свои жертвы в пищу

«травоядное животное — растение»

+

-

Животные потребляют неподвижные растения в пищу

 

«паразит — хозяин»

+

-

Паразиты эксплуатируют живых хозяев

 

Необходимо отметить, что в природных условиях отрицательные взаимодействия нельзя называть «вредными», поскольку все отношения в природных экосистемах являются сбалансированными и способствуют  стабильному существованию экосистем.

Положительные взаимодействия — комменсализм, кооперация, мутуализм

Положительные представлены в последовательности, в которой они формировались в процессе совместной эволюции видов:

– комменсализм (+ 0) — выгоду имеет один вид;

– кооперация (сотрудничество) (+ +) — выгоду имеют оба вида, но они могут жить отдельно друг от друга;

– мутуализм (симбиоз) (+ +) — выгоду имеют оба вида и они полностью зависят друг от друга.

Наиболее простым видом положительных взаимодействий является комменсализм (от лат. cum — с, вместе, mensa — стол, трапеза). Значение комменсализма в природе очень велико, поскольку позволяет полнее использовать ресурсы среды.

Чаще всего комменсализм встречается в трех формах:

а) квартирантство — один вид предоставляет другому место для жилья, прикрепления или укрытия;

б) нахлебничество (сотрапезничество) — комменсал питается остатками пищи хозяина, его омертвевшими тканями, прижизненными выделениями, экскрементами и др.;

в) форезия — хозяин выполняет роль переносчика или самого комменсала (акула — рыбы-прилипалы) или его семян, личинок (личинки двустворчатого моллюска перловицы — глохидии переносятся на жабрах рыб).

В зависимости от способности комменсала существовать отдельно от хозяина различают:

– необязательный (факультативный) комменсализм: Гиены и шакалы могут охотиться самостоятельно, но часто добирают остатки добычи львов;

– обязательный (облигатный) комменсализм: многие бактерии и простейшие живут только в пищеварительных трактах животных, не принося им вреда (в противном случае это классифицировалось бы как паразитизм).

Если в процессе совместного сосуществования выгоду от объединения начинают получать оба вида, то эти отношения называют кооперацией, или сотрудничеством. При кооперации объединение является взаимополезным, но не обязательным для обоих видов.

Пример кооперации — жизнь морских ракообразных, обитающих в раковинах моллюсков с прикрепленными к ним актиниями, которых раки специально сажают себе на раковину. Актиния передвигается на раке, питается остатками его пищи и защищает от врагов своими ядовитыми щупальцами (рисунок 1). Однако их отношения не являются обязательными, они могут существовать и раздельно друг от друга.

Рис. 14.1. Сотрудничество рака-отшельника и актинии

Рис. 1. Сотрудничество рака-отшельника и актинии

 

Если же потребность организмов  друг в друге становится жизненно необходимой, такой тип отношений называют мутуализмом (от лат. mutuus — взаимный), или симбиозом (от греч. symbiosis — совместное проживание).

Примерами симбиоза являются отношения многих животных с обитателями их кишечников — бактериями и простейшими, помогающими им переваривать пищу. Подавляющее большинство растительноядных животных, как позвоночных, так и беспозвоночных, не имеют своих целлюлаз — ферментов, расщепляющих целлюлозу. Это делают за них обитающие в их кишечниках бактерии и простейшие. Некоторые кишечные бактерии синтезируют для животных витамин В12.

Аменсализм

Аменсализм (от лат. amens – безумный) — тип отрицательных межвидовых взаимодействий, при котором один вид подавляет другой, не испытывая его обратного воздействия. В основе аменсализма лежит конкуренция между видами в борьбе за ресурсы.

Наиболее часто аменсализм встречается в виде аллелопатии (от греч. allelon — друг друга, взаимно, pathos — страдание) — выделения веществ-ингибиторов, подавляющих рост и размножение других видов. Аллелопатия широко распространена среди растений, грибов и бактерий.

Многие бактерии и грибы выделяют антибиотики и фунгициды — вещества, подавляющие рост других бактерий и грибов.

Первым антибиотиком, который удалось выделить из грибов, был пенициллин, продуцируемый плесневыми грибами рода Penicillium. Начало применения пенициллина в медицинской практике (1940—1941 гг.) открыло новую эру в лечении инфекционных болезней. За получение пенициллина А. Флеминг, X. Флори и Э. Чейн были удостоены в 1945г. Нобелевской премии.

Вопросы.

  1. Что такое биотические отношения.
  2. Перечислить виды биотических связей.
  3. Типы межвидовых взаимодействий.

Практическая работа: Определение типов биотических отношений по гербарным материалам, коллекциям, чучелам, открыткам и др.

(21.11.16) 1,5 часа

Тема 5. Популяция – структурная единица вида

Понятие о популяции. Основные свойства: численность, плотность, рождаемость, возрастной состав, распространение по территории, смертность. Экологическое значение свойств популяции.

Численность популяции. Способы регуляции численности: жесткие и не жесткие. Механизм регуляции численности: факторы, зависимые от плотности, факторы не зависимые от плотности.

Практическая работа: Изменение численности населения птиц лиственного леса под воздействием сплошных рубок. Типы распределения отдельных популяций по территории.

(05.12.2016) 3 часа.

Популяцией  в экологии называют группу особей одного вида, находящихся во взаимодействии между собой и совместно населяющих общую территорию.

Слово «популяция» происходит от латинского «популюс» – народ, население. Экологическую популяцию, таким образом, можно определить как население одного вида на определенной территории.

Члены одной популяции оказывают друг на друга не меньшее воздействие, чем физические факторы среды или другие обитающие совместно виды организмов. В популяциях проявляются в той или иной степени все формы связей, характерные для межвидовых отношений, но наиболее ярко выражены мутуалистические (взаимно полезные) и конкурентные. Специфические внутривидовые взаимосвязи – это отношения, связанные с воспроизводством: между особями разных полов и между родительским и дочерним поколениями.

При половом размножении обмен генами превращает популяцию в относительно целостную генетическую систему. Если перекрестное оплодотворение отсутствует и преобладает вегетативное, партеногенетическое или другие способы размножения, генетические связи слабее и популяция представляет собой систему клонов, или чистых линий, совместно использующих среду. Такие популяции объединены в основном экологическими связями. Во всех случаях в популяциях действуют законы, позволяющие таким образом использовать ограниченные ресурсы среды, чтобы обеспечить оставление потомства. Достигается это в основном через количественные изменения населения. Популяции многих видов обладают свойствами, позволяющими им регулировать свою численность.

Поддержание оптимальной в данных условиях численности называют гомеостазом популяции.  Гомеостатические возможности популяций поразному выражены у различных видов. Осуществляются они также через взаимоотношения особей.

Таким образом, популяции, как групповые объединения, обладают рядом специфических свойств, которые не присущи каждой отдельно взятой особи.

Основные характеристики популяций:

  1. численность – общее количество особей на выделяемой территории;

Численность популяции - важная экологическая характеристика популяции. Число особей в популяции имеет огромное эволюционное значение. Но важна не общая численность особей в популяции, а эффективная численность - репродуктивная численность - та часть популяции, которая формирует генофонд следующего поколения (генетически эффективная величина).

Для человека эффективная численность равна 45, для домовой мыши - 10, для комара аёдес и дрозофилы - 500, для моллюска цепея неморалис - 230, для мокрицы (сухопутного рака) - 19 особей.

Колебания численности

Средняя численность большинства крупных популяций изменяется из года в год относительно мало, потому что: каждый год погибает примерно одинаковое количество особей; организмы размножаются более интенсивно при меньшей плотности популяции и менее интенсивно при большей плотности; различные факторы среды противодействуют высокому репродуктивному потенциалу популяций.

Основными причинами колебаний численности популяций есть изменение условий существования: изменение действия абиотических факторов среды, изменение межвидовых отношений (враги, паразиты), изменение количества и качества корма. Изменение численности популяции складывается за счет таких явлений: рождаемости, смертности, вселения (иммиграции) и выселения (эмиграции).

Численность и плотность – основные параметры популяции. Плотность – количество особей или их биомасса на единице площади или объема. В природе происходит постоянные колебания численности и плотности.

Прирост популяции - это разница между рождаемостью и смертностью, прирост популяции может быть как положительным, так и отрицательным.

Любой популяции организмов в конкретных условиях свойствен определенный средний уровень численности, вокруг которого происходят колебания. Отклонения от этого среднего уровня имеют разный размах, но в норме после каждого отклонения численность популяции начинает изменяться с обратным знаком. Выделяют две принципиально разные стороны популяционной динамики: модификацию и регуляцию. Модификация – это случайное отклонение численности, возникающее в результате воздействия самых разнообразных факторов, не связанных с плотностью популяции. Регуляция – это возврат популяции после отклонения к исходному состоянию, совершающийся под влиянием факторов, сила действия которых определяется плотностью популяции.

Регулирующие факторы не просто изменяют численность популяции, а сглаживают ее колебания, приводя после очередного отклонения от оптимума к прежнему уровню. Это происходит потому, что эффект их воздействия тем сильнее, чем выше плотность популяции. В качестве регулирующих сил выступают межвидовые и внутривидовые отношения организмов. Наиболее эффективные из них – трофические отношения организмов: хищничество, паразитизм, собирательство, пастьба и другие, как прямые, так и косвенные. Прямые связи хищник – жертва наиболее изученные регуляторные механизмы в сообществах. Действие их, таким образом, двустороннее.

2) плотность популяции – среднее число особей на единицу площади или объема занимаемого популяцией пространства; плотность популяции можно выражать также через массу членов популяции в единице пространства;

3) рождаемость – число новых особей, появившихся за единицу времени в результате размножения;

4) смертность – показатель, отражающий количество погибших в популяции особей за определенный отрезок времени;

К основным динамическим характеристикам популяции относятся рождаемость и смертность. Рождаемость – это способность популяции к увеличению численности. В популяционной экологии это появление на свет новых особей любого организма независимо от того, рождаются ли они, вылупляются из яиц, прорастают из семян или появляются в результате деления. Максимальная рождаемость — это теоретический максимум скорости образования новых особей в идеальных условиях. Максимальная рождаемость постоянна для данной популяции. Экологическая рождаемость обозначает увеличение численности популяции при фактических или специфических условиях среды. Эта вели­чина не постоянна и варьирует в зависимости от размерного и возрастного состава популяции и физических условий среды. Рождаемость выражают как скорость, определяемую путем деления общего числа появившихся особей на время (Абсолютная рождаемость), либо как число появившихся особей в единицу времени на 1 особь в популяции (Удельная рождаемость). Различие между абсолютной и удельной рождаемостью легко проиллюстрировать на таком примере: в городе с населением 10 000 появилось 400 новорожденных. Абсолютная рождаемость составит 400 в год, а удельная — 0,04 (4 на 100, или 4%). Различие между максимальной и реализованной рождаемостью можно проиллюстрировать при изучении природной популяции птицы на гнездовьях городского парка, и популяции мучного хрущака. Птицы отложили 510 яиц, оперилось 265 птенцов, поэтому экологическая рождаемость составляет 52%. Жуками было отложено 12 000 яиц, из которых вылупились только 773 (или 6 %) личинки. Для видов, которые не охраняют яйца и не заботятся о потомстве, характерна высокая потенциальная и низкая реализованная рождаемость. Смертность отражает гибель особей в популяции. Смертность можно выразить числом особей, погибших за данный период или в виде удельной смертности для всей популяции. Экологическая смертность — гибель особей в данных условиях среды. Эта величина не постоянна и изменяется в зависимости от условий среды и состояния самой популяции. Теоретическая Минимальная смертность — величина, постоянная для популяции; она представляет собой гибель особей в идеальных условиях, при которых популяция не подвергается лимитирующим воздействиям. Даже в самых лучших условиях особи будут умирать от старости. Этот возраст определяется Физиологической продолжительностью жизни, Которая намного превышает среднюю Экологическую продолжительность жизни.

Изменение численности популяции происходит в результате изменений рождаемости (плодовитости) и смертности. Но в большинстве случаев ключевым фактором, регулирующим численность популяции, является фактор, влияющий на смертность. Факторы, влияющие на рождаемость и смертность популяции, действуют более эффективно при увеличении плотности популяции. Такие факторы называют зависимыми от плотности популяции. К их числу относятся, например, нехватка пищи, возрастание численности врагов, заболеваемость. При высокой плотности популяции ее члены бывают слабее физически и мельче. Это может понизить их сопротивляемость к болезням и сделать более доступными хищникам. Кроме того, при высокой плотности рождаемость животных часто снижается, даже если нет недостатка в пище. При этом могут происходить различные гормональные сдвиги, которые влияют на половое поведение животных, усиливается их агрессивность. Родительская забота ослабевает, детеныши рано покидают гнезда, и снижается вероятность их выживания. У растений число семян, образующихся на каждой особи, тоже может уменьшаться при возрастании плотности. Другой зависимый от плотности фактор, который может влиять на величину плотности популяции, - это миграция (или расселение). Например, у тлей при высокой плотности популяции не только замедляется размножение, но и у многих особей развиваются крылья, что позволяет им покидать растения, на которых они кормились. Существуют и факторы, не зависимые от плотности популяции. Примером может служить воздействие неблагоприятной погоды (суровая зима, засуха) и природные катаклизмы (пожар, землетрясение, наводнение, ураган и др.). Однако многие факторы, как зависимые, так и независимые от плотности, часто вступают в сложные взаимодействия.

5) прирост популяции – разница между рождаемостью и смертностью; прирост может быть как положительным, так и отрицательным;

6) темп роста – средний прирост за единицу времени.

Популяции свойственна определенная организация.

Распределение особей по территории, соотношения групп по полу, возрасту, морфологическим, физиологическим, поведенческим и генетическим особенностям отражают структуру популяции.  Она формируется, с одной стороны, на основе общих биологических свойств вида, а с другой – под влиянием абиотических факторов среды и популяций других видов. Структура популяций имеет, следовательно, приспособительный характер. Разные популяции одного вида обладают как сходными особенностями структуры, так и отличительными, характеризующими специфику экологических условий в местах их обитания.

Таким образом, кроме адаптивных возможностей отдельных особей, население вида на определенной территории характеризуется еще и приспособительными чертами групповой организации, которые являются свойствами популяции как надиндивидуальной системы. Адаптивные возможности вида в целом как системы популяций значительно шире приспособительных особенностей каждой конкретной особи.

Каждый вид, занимая определенную территорию (ареал), представлен на ней системой популяций. Чем сложнее расчленена территория, занимаемая видом, тем больше возможностей для обособления отдельных популяций. Однако в не меньшей степени популяционную структуру вида определяют его биологические особенности, такие, как подвижность составляющих его особей, степень их привязанности к территории, способность преодолевать естественные преграды.

Вопросы.

  1. Дать понятие популяции.
  2. Основные характеристики популяции.

Практическая работа: Изменение численности населения птиц лиственного леса под воздействием сплошных рубок. Типы распределения отдельных популяций по территории.

(19.12.16) 2 часа

Тема 6. Общие вопросы экологии

Законы, задачи, проблемы. Методы исследования. Уровни организации.

(23.01.2017) 2 часа

Предмет и задачи экологии.

Предмет экологии – совокупность связей между организмом и средой.

Экология – наука изучающая взаимодействия организмов с окружающей средой и друг с другом. Сюда относятся и все условия существования, как неорганические условия – климат, неорганическая пища, состав воды, почвы и т.д., так и органические – общие отношения организмов ко всем остальным организмам.

Задачи теоретической экологии:

(1) разработать тереотип устойчивости экосистемы

 (2) изучение механизмов адаптации к среде

(3) регуляция численности популяций

(4) изучение биологического разнообразия и механизмов его поддержания

(5) исследование продуктивности процессов в экосистеме

(6) исследование процессов, протекающих в биосфере, с целью поддержания ее устойчивости

(7) моделирование состояния биосферы и экосистем с учетом глобальных биосферных процессов.

Задачи прикладной экологии:

(1) прогнозирование и оценка возможности отрицательных последствий для окружающей среду, проектирование и конструирование предприятий

(2) оптимизация инженерных, технологических и проектно-конструкторских решений, исходя из минимального ущерба окружающей среде

 (3) улучшение качества окружающей среды

(4) сохранение, воспроизводство и рациональное использование природных ресурсов

 (5) стратегическая задача – развитие теории взаимоотношения природы и общества на основе нового взгляда, рассмативающего человеческое общество как неотъемлемую часть биосферы.

Экологические законы.

1. З.внутреннего динамического равновесия: наличие ответных реакций отдельных или взаимосвязанных природных систем и их иерархий при воздействии на них вещества, энергии или информации; любое изменение среды ведет к ответным реакциям, стремящимся нейтрализовать результаты изменений.

2. З.толерантности — определяет положение, по которому любой избыток вещества или энергии оказывается загрязняющим окружающую среду. Другая формулировка: фактором, ограничивающим процветание организма или вида, может быть как минимум, так и максимум экологического воздействия.

3. З.максимизации энергии: выживание или сохранение одной системы в соперничестве с другими определяется наилучшей организацией поступления в нее энергии и использования ее максимального количества наиболее эффективным способом.

4. З.минимума: выносливость организма определяется самым слабым звеном в цепи его экологических потребностей; жизненные возможности организма или системы лимитируют экологические факторы, количество и качество которых близки к необходимому организму или экосистеме минимуму.

5. З.ограниченности природных ресурсов: все природные ресурсы Земли являются конечными.

6. З.пирамиды энергий, правило 10%: каждый последующий трофический уровень ассимилирует не более 10% энергии предыдущего.

7. З.заполнения экологической ниши: при заполнении ниши исчезнувший или уничтоженный вид заменяется функционально близким или экологически аналогичным видом.

Законы Коммонера: «Все связано со всем», «Все должно куда-то деваться», «Природа знает лучше», «Ничто не дается даром». Согласно им, глобальная экосистема представляет собой единое целое, в рамках которого ничего не может быть выиграно или потеряно и которое не может явиться объектом всеобщего улучшения; все, что может быть извлечено из глобальной экосистемы человеческим трудом, должно быть возмещено.

Структура экологии. История развития экологии.

Основная часть экологии – общая экология – биологическая наука, изучающая общие закономерности взаимоотношения любых живых организмов и среды, включая человека как биологический вид. В составе общей экологии разделяют: АУТОЭКОЛОГИЯ (организм-среда), СИНЭКОЛОГИЯ (сообщество-среда) изучает сообщества живых организмов и их взаимоотношения со средой, ПОПУЛЯЦИОННАЯ экология (популяция-среда) изучает структуру и динамику популяций отдельных видов. По конкретным объектам и средам: экология животных, растений, микроорганизмов. Современная экология в связи с усилением воздействия человеческого общества на окружающую среду является сложной междисциплинарной наукой, изучающей сложные проблемы взаимодействия с окружающей природной средой. Сложность, актуальность и многогранность этой проблемы вызвана обострением экологической обстановки на нашей планете и привела к экологизации многих технических и гумманитарных наук. Появились науки – инженерная экология, космическая экология, сельскохозяйственная экология. Инженерная экология изучает принципы создания новых экологических технологий. С-х экология занимается возможностью сохранения почв, вод, атмосферы. Математическая экология занимается процессами в биосфере. Городсткая экология – о процессах в городе. Социальная экология занимается изучением природы человеческого общества. Теоретическая и прикладная экология: прикладная - разрушение биосферы человеком, способы предотвращения этого. Разработка принципов рационального природопользования.

ИСТОРИЯ: Термин экологии был введен в 1866 году Эрнстом Геккелем.

(1) человечество интересуется природной окружающей средой

 (2) во 2-ой половине 20-го века экологизация науки.

Значение экологии

Установить правильные взаимоотношения с природными процессами, обеспечивающими устойчивое поддержание жизни на нашей планете, можно лишь на основе знания законов формирования и поддержания активного функционирования биологических систем, обеспечивающих глобальный круговорот веществ.

Экосистема– основное понятие экологии. Эмерджентность экосистем.

Впервые термин ЭКОСИСТЕМА ввел Тэнсли в 1935 году. Экосистема – это совокупность живых организмов, взаимодействующих друг с другом и с окружающей средой посредством обмена веществом, энергией, информацией и сохранения устойчивости в течении длительного времени. Экосистема имеет 2 компонента:

(1) биотический (живой)

(2) среда обитания (не живой). Между ними осуществляется взаимосвязь посредством обмена веществом, энергией, информацией.

Экосистема – (среда обитания – экологические факторы, биотические факторы [биотическая структура {продуценты, консументы, редуценты}]). Главные свойства экосистем: Эмердженктность – свойства целого не равно сумме свойств его частей. Непрерывность. Эмердженктность возникает как в результате взаимодействия компонентов, а не как суммирование.

Экологические факторы среды. Абиотические факторы.

Экологические факторы – любой элемент среды, способный оказывать прямое или косвенное воздействия на живые организмы, хотя бы на протяжении одной из фаз их индивидуального развития. Среда – часть природы, окружающая живые организмы и оказывающая на них прямое влияние или косвенное воздействие – воздух, вода, почва (гумус – плодородный слой, содержащий остатки живых организмов – слагается из детрита, т.е. мертвого органического вещества). Детрит разлагается от нескольких до миллионов лет. ДЕТРИТ – опад листьев (разлагается 2-3 года), стволы деревьев (10-15 лет), гумус (сотни лет), сапропель (морские остатки), торф (тысячи лет), нефть (миллионы лет). Условия жизни – совокупность необходимых для организмов элементов среды, с котороми они находятся в неразрывном единстве и без которых существовать не могут. Абиотические факторы – факторы неживой природы. Экологические факторы – абиотические (климатические, почвенные, факторы водной среды, факторы рельефа (топографические, ораграфические), огонь (пожары)), факторы питания, биотические факторы (живой природы) – фитогенные (растения), зоогенные, микробогенные.

Климатические факторы, почвенные факторы, факторы водной среды, орографические факторы, пожары, факторы питания.

Климатические факторы – внешний источник – солнце, (1) солнечные лучи – 99%. Длина – 0,17-4 микрометров. В этом интервале 48% - видимые лучи. 7% - ультра.., 45% - ультра… (2) освещенность (3) температура поверхности Земли – суточные и сезонные колебания температуры (4) влажность воздуха – от нее зависит размножение растений, животных и другое. (5) осадки – гумидные облака (много – 250-2500 мм/год), аридные (мало <0,18 мм/год) (6) Ветер – важный фактор переноса примесей в атмосферу (7) Давление атмосферы (нормальное 10 в 5-ой степени Мпа, 760 мм.р.т.). Есть области – повышенного давления (антициклоны) и пониженного (циклоны) и есть средние (8) Химические факторы – газовый состав атмосферы. 78% - N2 (азот), 21% - O2 (кислород), 9% - Ar (аргон), 0,033% (углекислый газ), содержание CO2 увеличивается из-за антропогенного воздействия.

ПОЧВЕННЫЕ ФАКТОРЫ. Почва – рыхлый поверхностный слой суши, способный производить урожай растений. Главное свойство почвы – плодородие. Плодородие – способность удовлетворять потребности растений в питательных веществах. Материнская порода – водонепроницаемый слой. Слои почвы: 1. Детрит – лесная подстилка – остатки многолетних трав. 2. гумус. 3ю элювиальный слой – рыхлый слой, через который проходит вода. 4. целлювиальный – слой вмывания. 5. материнская порода. Почвенные факторы – химические, водные, физич.-плотн., мощность, гравиаметрическое состояние. (1) доступность влажности зависит от влагоустойчивости почвы (2) температура - -1, -2 градуса (3) структура почвы – механический состав – песок, супесь, суглинок, глина.

От структуры зависит способность удерживать влагу, проникновение корней в почву и воздухопроницамость. Химические факторы: (1) химический состав почвы – 50% кремнезем SiO2, 10%-25% - глинозем Al2O3, 1-10% Fe2O3, 0,1-1% - K2), CaO, P2O5, <0,1 – другое. Водородный показатель pH= - lgCн+ -- концентрация ионов водорода. С – концентрация. pH=7 – нейтральная среда, pH<7 – кислая, pH>7 – щелочная.

Cн+ + Cон- = 10 (с. -- 14) при 298К. Щелочность почвы – известковость и засоленность почвы. (2) соленость почвы – содержание различных солей. Соли, содержащие Cl - -- солянчики, на них ничего не растет. Соли, содержащие Na2CO3 – солонцы. Для пов. урожая – содержание нитрат-ионов, ионов фосфора, ионов калия…

Рассмотрим факторы ВОДНОЙ среды.

Физические:

(1) прозрачность,

 (2) мутность,

 (3) скорость течения – важнейший фактор очищения воды.

Химические:

(1) кислород, расстворенный в воде. При 30 градусах максимальная расстворенность кислорода в литре воды – 34 мл – в 1 л. воды. Минимальное количество кислорода, при котором органическая жизнь может существовать – 5 мг/л.

 (2) соленость воды, морская = 35г/л – содержание солей, пресные воды <1г/м. Соли – 80% - Ca(+2) и Mg(+2) образуют жесткость воды.

(3) состав обменных катионов обменная возможность. ОРОГРАФИЧЕСКИЕ факторы – высота склона над уровнем моря, крутизна склона, экспозиция (север/юг).

ФАКТОРЫ ПИТАНИЯ:

(1) качество пищи

 (2) количество пищи. Пищевой ресурс – любой потребляемый компонент среды, который может быть отнят одним организмом у другого. Макроэлементы – нужны в большом количестве – P, N, C, K, Ca, S, Mg. Микроэлементы – Fe, Mg, Cu, Zn, B, Cr, Cl – нужны в небольшом количестве. Эти элементы необходимы для питания растений. Для животных – важно количество пищи. Жив. делятся на фитофаги (растения), зоофаги (питание животных), детритофаги (земляной червь), копрофаги (дерьмо), некрофаги. Полифаги – все едят, олифаги – паразиты, хищники. Монофаги – едят один вид пищи. Реппеленты – вещества, выделяемые живыми организмами, чтобы их не съели. Аттрактанты – вещества, привлекающие к себе.

Биотические факторы. Внутривидовые и межвидовые взаимоотношения между организмами.

Биотические факторы – воздействие живых организмов – это различные формы взаимодействия между особями и популяциями.

(1) внутривидовая конкуренция – главный абиатический фактор для вида – борьба за существование, чем больше совпадают потребности, тем сильнее борьба.

 (2) прямая конкуренция – животные дерутся между собой до смерти. У растений – алмопатия – выделение токсинов.

(3) косвенная конкуренция – опосредованная, т.е. не напрямую. ВНУТРИвидовые ВЗАИМОотношения

Таблица: (взаимоотношения, вид А, вид В); (1. борьба за существование или межвидовая конкуренция, --, --); (2. взаимополезные. протокооперация – сотрудничество. нутуализм – обязательные взаим.. симбиоз – очень тесное сотрудничество, +, +); (3. нейтрализм – практически не встречается, 0, 0); (4. комменцализация, +, 0); (5. аменсализм – травы растут под тенью дерева, 0, --); (6. хищничество. паразитизм, +, --)

Взаимодействие экологических факторов. Толерантность, кривая толерантности. Закон минимума. Закон толерантности.

Факторы делятся на прямодействующие и косвеннодействующие. Каждый экологический фактор необходим для организма. ЗАКОН НЕЗАВИСИМОСТИ экологических факторов Вильямса: не один экологический фактор не может быть полностью заменен другим, тем не менее есть ведущие (необходимые) и второстепенные (сопутствующие).

В природе существует смена ведущих факторов. Степень важности экологических факторов зависит от среды обитания. На Земле 4 среды обитания: вода, наземно-воздушная, почвенная и тело живых организмов. В водной среде главный фактор кислород, растворенный в воде (не меньше 5 мг/л). Обитатели водной среды – гидробиоты. В наземно-воздушной главный фактор – температура. В почвенной среде – кислород, химический состав. В живых организмах – обилие пищи. ТОЛИРАНТНОСТЬ – способность живых организмов выдерживать условия жизни.

Кривая толирантности:

  1. зона гибели,
  2.  2 – зона стресса,

3 – зона нормальной жизнедеятельности – зона оптиума.

Точки минимума и максимума значений факторов называются точками ПЕССИУМА – предельно устойчивые, ниже и выше организм не может существовать.

Закон МИНИМУМА установил Ю. Либих: вещество, находящееся в минимуме управляется урожай растительности и определяется величина и устойчивость урожая во времени. Позже американский ученый Шелфорд в начале 20го века показал, что не только недостаток, но и избыток вещества влияют на жизнедеятельность организмов и сформулировал закон ТОЛЕРАНТНОСТИ: отсутствие или невозможность процветания определяется недостатком или избытком любого фактора, уровень которого может оказаться близким в пределах устойчивости или выносливости, т.е. в пределах толерантности.

Закон лимитирующего фактора. Адаптация животных организмов к экологическим факторам.

По Шелфорду факторы, присутствующие как в избытке, так и в недостатке по отношению к оптимуму называются лимитирующими или ограничивающими. Закон ЛИМИТИРУЮЩЕГО фактора: в комплексе факторов сильнее действует тот, который близок к пределу выносливости.

АДАПТАЦИЯ – однонаправленное приспособление организмов к экологическим факторам. АДАПТАЦИИ – эволюционно выработанные и наследственно закрепленные особенности живых организмов, обеспечивающие нормальную жизнедеятельность в условиях динамических экологических факторов. Адаптации бывают морфологическими (морфо – форма), физиологическими (меняются физиологические процессы), поведенческие (запугивание, затаивание). Адаптации всегда возникают под воздействием 3х факторов – изменчивость, наследственность, естественный отбор. Источник адаптации – мутации (генетические изменения).

Экологическая ниша. Дифференциация экологической ниши, модель экологической ниши.

Экологическая ниша – место видов в природе, совокупность всех факторов и ресурсов среды, в пределах которой может существовать вид в природе. Ниша – абстрактное понятие, которое сводит все, в чем нуждается организм. По Одуму, экологическая ниша – роль, которую играет организм в природе или профессия организма. Место обитания – адрес организма. Например рассмотрим обитателей почвы – они различают остатки почвы и размельчают, а потом микроорганизмы раз. дальше. Разные виды могут занимать одни ниши. Но могут занимать и разные ниши. В природе важное значение имеет дифференциация ниши – процесс разделения популяции, видов, пространства и ресурсов среды. ФУНДАМЕНТАЛЬНАЯ ниша – условия среды, в которых вид может существовать без конкуренции. РЕАЛЬНАЯ ниша – та, которую вид может отстоять.

Популяция, структура, характеристики, динамика численности.

ПОПУЛЯЦИЯ – группа организмов одного вида, внутри которой особи могут обмениваться генетической информацией, занимать конкурентное пространство, связывать между собой различные взаимоотношения – единство определяется площадью территории или акватории. Популяция – это генетическая единица вида. В зависимости от размеров занимаемой территории различают 3 типа популяции: (1) элементарная популяция – это группа организмов одного вида, которая занимает небольшой однородный участок. Генетический обмен происходит часто. (2) экологическая популяция – это совокупность элементарных популяций. Генетический обмен реже. (3) Географическая популяция – группа особей одного вида, занимающих территорию с однородными условиями существования. Генетический обмен – редко. Один вид занимает АРЕАЛ вида – пространство, которое вид занимает на земле.

По СТРУКТУРЕ различают возрастную структуру – соотношения особей разного возраста. Различают: (1) предрепредуктивный – молодой (2) репредуктивный (3) пострепредуктивный. Структура половаяя (сексуальная структура), пространственная структура – колонии, семьи, стаи.

Биогеоценоз, структура биогеоценоза.

Биогеоценоз – это совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий), имеющая свою особую специфику взаимодействия этих слагающих ее компонентов и определенный тип обмена веществами и энергией между собой и другими явлениями природы и представляющая собой внутреннее противоречивое единство, находящееся в постоянном движении, развитии. (короче – обитающие на суше). СТРУКТУРА: компоненты – биотоп (климатопы, эдатопы), биоценоз (фитоценоз, зооциноз, микробоциноз). Между всеми компонентами существует тесная взаимозав., и тесная взаимосвязь. Границы биогеоценоза определяются по фитоценозу (важнейший компонент). Виды, которые занимают ведущее место в биоценозе – ДОМЕНАНТЫ. Степень доменирования – это отношение числа особей 1го вида к числу особей в сообществе. Предоменанты – живут за счет доменантов. Виды-эдификаторы – создают среду для всего сообщества. Без этих видов условия среды меняются.

Наземные и водные экосистемы.

Наземные: биогеоценозы, биоценотические комплексы, ландшафты, биомы, биосфера. Биомы – тундра, хвойные леса, листопадные лиса умеренного пояса, степи, саванны, дождливая зима и засушливое лето, вечнозеленые тропические леса. ВОДНЫЕ: пресноводные (лотические (текучие), болота, лентические (стощие)), морские (эстуарии (устья рек), открытый океан, воды континентального шельфа, апвелленг (районы продуктивного рыболовства)). Водные организмы: (1) донные – бентос (2) околодонные – перекитон (3) плавающие микроорганизмы – планктон (4) плавающие крупные – нектон (5) околоповерхностные – нейстон.

В воде есть ливническая зона, зона, куда проникает свет и профундальная зона – не проникает солнечный свет.

Типы экосистем.

Автотрофные – пребладают продуценты – это живые организмы, которые способны синтезировать органическое вещество из неорганических составляющих с использованием внешних источников энергии. Эти экосистемы сами снабжают себя органическим веществом.

Гетеротрофные – продуцентов нет или их роль незначительна. Гетеротрофы – потребители (консументы), используют вещества, накопленные продуцентами.

Природные экосистемы и антропогенные экосистемы.

По размеру: микроэкосистемы, мезоэкосистемы (лес), макроэкосистемы (контененты, океаны), глобальная экосистема (биосфера).

Трофические цепи. Примеры. Пастбищная и детритная пищевые цепи.

Энергия солнца усваивается растениями и за счет этого живут другие организмы. Трофическая цепь (цепь питания) – это цепь последовательной передачи вещества и эквивалентной ему энергии от одних организмов к другим. Звенья расположены на различных уровнях – консументы (производители органических веществ), консументы (потребители) и редуценты (используют мертвое органическое вещество, разлагая его до неорганического). ПРИМЕРЫ цепей питания: трава-лиса, детритные цепи – опавшие листья-насекомые-птицы, сельскохозяйственная цепь – трава-корова-человек, в водоеме – фитопланктон-зоопланктон-плотва-щука

ПОТОК ЭНЕРГИИ В ЭКОСИСТЕМЕ: Трофическая цепь является энергетической цепью. Любое количество органического вещества эквивалентно количеству энергии. Эту энергию извлекают, разрывая энергетические связи вещества. Поток вещества – это перемещение вещества в форме химических элементов или их соединений от продуцентов к редуцентам или без них. Поток энергии – это переход энергии в виде химической связи по цепям питания от одного трофического уровня к другому. Энергия может быть использована 1 раз. Скорость потока энергии – это количество энергии, перемещающаяся с одного трофического уровня на другой в единицу времени. Пищевая цепь -–это основной канал переноса энергии в пищевых системах. Биомассы на Земле: 90% - фитофаги, 55% - фитомасса тропических лесов, 5% - зоомасса.

Энергия в экосистемах. Хемосинтез и фотосинтез. Продуктивность экосистем.

Энергетические превращения осуществляются по законам термо-динамики – энергия переходит из одной формы в другую, но не исчезает и не появляется занова. Самопроизвольно идут только те процессы, где энергия рассеивается. ЭНТРОПИЯ – мера упорядоченности системы. Живые системы открыты для обмена энергией. Из вне поступает даровая энергия солнца. В живых системах есть компоненты, обладающие механизмом улавливания, концентрации и рассеивания энергии (увеличение энтропии) – проц. характеристика для живых и неживых систем. Только живые системы способны улавливать и концентрировать энергию. Процесс образования порядка в системе из хаоса окружающей среды называется самоорганизацией, он ведет к уменьшению энтропии. Живые системы поддерживают свою жизнедеятельность благодаря наличию даровой избыточной энергии, во-вторых благодаря способности за счет устройств, сост. ее компонентов эту энергию улавливать и концентрировать, а использовав рассеивать в окружающую среду.

ФОТОСИНТЕЗ – синтез сахара из неорганических веществ – CO2 и H2O, при помощи солнечной энергии. 6CO2 + 12H20 (2816 дж, хлорофил)  C6H12O6 + 6O2 + 6H2O

ПРОДУКТИВНОСТЬ ЭКОСИСТЕМ – скорость образования вещества в единицу времени. Продуктивность бывает первичной и вторичной. Первичная – продуценты, вторичная – консументы и редуценты. Первичная бывает валовая и чистая. Валовая – вся энергия, которую растения уловили и перевели в органическое вещество. Чистая – все вещество за вычитом расходов на дыхание и отмирание. На каждом уровне трофической цепи теряется от 90% до 99% энергии.

Экологические пирамиды. Экологическая сукцессия.

Соотношение численности, биомассы или эквивалентной ей энергии живых организмов называется ПИРАМИДОЙ численности биомассы или энергии. Длина или площадь пропорциональна числу организмов их биомассе или эквивалентной ей энергии.

Экологическая СУКЦЕССИЯ – это изменение состава и строения экосистемы под действием внешних и внутренних факторов. Сукцессиии бывают первичными и вторичными --- 1. экосистема возникает на безжизненном месте, 2. сообщество развивается на месте уже существущего. СУКЦЕССИЯ – смена одних видов другими за определенный промежуток времени. Бывают автотрофные (растущий лес), гетеротрофные (расходуется больше вещества, чем производится), климаксная система (состояние равновесия).

Круговорот веществ в биосфере. Большой и малый круговорот.

Под круговоротом в биосфере понимают повторяющиеся процессы превращений и пространственных перемещений веществ, имеющие определенное поступательное движение, выражающееся в качественных и количественных различиях отдельных циклов. Выделяют 2 круговорота – большой (геологический) и малый (биотический). Большой (геологический) круговорот веществ протекает от нескольких тысяч до нескольких миллионов лет, включая в себя такие процессы, как круговорот воды и денудация суши. ДУНУДАЦИЯ суши складывается из общего изъятия вещества суши (52990 млн.т/год), общего привноса вещества на сушу (4043 млн.т/год) и составляет 48947 млн.т/год. Антропогенное вмешательство ведет к ускорению денудации, приводя, например, к землятрясениям в зонах водохранилищ, построенных в сейсмоактивных районах. МАЛЫЙ (биотический) круговорот веществ происходит на уровне биогеоциноза или биогеохимического цикла.

Круговорот биогенных элементов (углерод, азот, фосфор).

Углерод включается в состав органических элементов в процессе фотосинтеза из CO2. Другие процессы биосинтеза преобразуют углерод в крахмал, гликоген и другие вещества. Эти вещества формируют ткани фотосинтезирующих организмов и служат источником органических веществ для животных. В процессе дыхания организма окисляются сложные органические вещества и выходит CO2, который опять участвует в фотосинтезе. Время круговорота – 8 лет.

Азот. Электрические разряды при грозах синтезируют из азота и кислорода оксиды азота, которые с дождем попадают в почву в виде азотной кислоты, где может образовываться аммиак, который может войти в цикл нитрификации.

Фосфор – очень важный элемент для всего живого, поскольку участвует в образовании и превращении азотистых веществ и углеводов в живых тканях – биосинтезе белков, нуклеиновых кислот, играющих главную роль в хранении и передаче наследственной информации и обеспечивающих синтез белков в клетках, пептидов и т.д., входит в состав скелета, тканей мозга, хромосом, ферментов, вирусов, протоплазмы живой клетки.

 Круговорот воды.

Большой круговорот воды на поверхности земного шара – испарение, конденсация, осадки. Растения могут усваивать влагу из почвы и перехватывать часть осадков. Эвапотранспирация – это суммарная отдача воды из экосистемы в атмосферу. Она включает как физически испаряемую воду, так и влагу, транспирируемую растениями. Уровень транспирации различен для разных видов и в разных ландшафто-климатических зонах. Если количество воды, просочившееся в почву, превышает ее влагоемкость, она достигает уровня грунтовых вод и входит в их состав. Подземный сток связывает почвенную влагу с гидросферой. В отличие от углерода и азота вода не накапливается и не связывается в живых организмах, а проходит через экосистемы почти без потерь, на формирование биомассы идет только 1% воды, выпадшей с осадками.

Антропогенный круговорот (ресурсный цикл).

Под ресурсным циклом или антропогенным круговоротом веществ понимают совокупность превращений и пространственных перемещений определенного вещества или группы веществ на всех этапах использования их человеком. Цикл фактически не замкнут из-за потерь, например, каменный уголь обратно в места залегания не возвращается. Антропогенный круговорот естественен, как и любой другой, но предполагает разумное волевое начало.

Биосфера, строение, происхождение. Ноосфера, ноосферогенез.

БИОСФЕРА – пространство на поверхности земного шара, в котором распространены живые существа. Термин был введен в 1875г. Эдуардом Зюссом. Атмосфера, гидросфера, литосфера – составляющие биосферы, в которых существует жизнь. Строение – живое вещество (совокупность живых организмов), костное вещество (все геологические образования, не входящие в состав живых организмов и не созданные ими), биокосное вещество (нефть и т.д.), биогенное вещество – геологические породы, созданные живыми организмами.

ВОЗНИКНОВЕНИЕ биосферы: 3,6 млрд. лет назад возникла жизнь. Теории возникновения жизни:

1. креацизм – божественное возникновение. 2. Самопроизвольное зарождение жизни – жизнь возникла неоднократно. 3. Т. стационарного состояния – всегда существоала. 4. Панспермия – жизнь занесена из вне. 5. биохимическая эволюция – в результате процессов, подчиненных химическим и физическим законам.

5.1. Возникновение жизни из неживой природы, т. Чапанина 1953 подтверждена С. Миллером. 3,5 млрд. лет назад не было атм. CO2, H20, CH4, NH3. Эти вещества образовали свободные радикалы. Появление органического вещества – аминокислоты, сахара и др. 3 млрд лет назад образовались первые клетки.

5.2. Развитие клетки организмов 1,5-2 млрд. лет назад

5.3. Большой биологический взрыв. 450 млн. лет назад

5.4. Антропогенный этап 1,5 млн. лет назад

Биогенез – развитие жизни и биосферы. Антропогенез. Ноосферогенез – развитие разума. Биосфера -> Ноосфера. Ноосфера – сфера разума.

Антропогенное воздействие на биосферу. Загрязнения.

Исторические этапы изменения биосферы человеком:

1. воздействие на природу человека как биологического вида.

2. Сверхинтенсивная охота.

3. Скотоводство.

4. Земледелие.

5. 300 лет назад – глобальное изменение всех компонентов биосферы.

Формы воздействия человека на биосферу:

1. Изменение структуры земной поверхности.

2. Изменение состава биосферы, круговорота и баланса слагающих ее веществ.

3. изменение энергетического баланса биосферы.

4. изменение, вносимые в биоту. ЗАГРЯЗНЕНИЕ БИОСФЕРЫ:

Загрязнение – неблагоприятное изменение окружения, являющегося побочным результатом деятельности человека. Привнесение в среду новых, не характерных для нее физических, химических или биологических компонентов или превышение естественного многолетнего содержания этих компонентов. Воздух, вода, почва – объекты загрязнения. Растения, животные микроорганизмы, человек.

Классификация загрязнений окружающей среды. Глобальные загрязнители. Последствия загрязнений.

КЛАССИФИКАЦИЯ ЗАГРЯЗНЕНИЯ:

1. Индигриентное (химическое)  неорганические и органические вещества.

2. Параметрическое (физическое)  тепловое, свтовое ЭМ, шумовое, радиоционное.

3. Биотеческое (на популяции).

4. Стационарное деструкционное изменение ландшафта.

Главные загрязнители биосферы:

1. CO2 – парниковый эффект.

2. CO – баланс верхних слоев.

3. NxOy (N20, NO, N2O3, NO2, N2O5) – смог, рестраторные заболевания.

4. SO2.

5. Фосфаты (гидросфера).

6. Тяжелые металлы Hg, Pb.

7. Нефть и нефтепродукты.

 8. Пестициды.

 9. Радиация.

ПОСЛЕДСТВИЯ ЗАГРЯЗНЕНИЙ:

1. Процесс нежелательных потерь вещества, энергии, труда, средства, рассеиваемые в биосфере.

2. Необратимое разрушение отдельных экосистем и биосферы в целом, включая воздействие на физико-химические параметры среды.

3. Потери плодородных земель, снижение продуктивности экосистем и биосферы в усл. морального состояния человека, как главной производительной силы общества. Локальные, региональные, национальные, глобальные. Технологические причины глобального загрязнения: 1. Осваивание невозобновимых и возобновимых природных ресурсов. 2. Строительные и горные работы. 3. Сжигание топлива. 4. Производство минеральных удобрений. 5. Развитие химической промышленности. 6. Несовершенство технологий. ПОНЯТИЕ ОБ ЭКОЛОГИЧЕСКОМ КРИЗИСЕ. Глобальное изменение всех компонентов биосферы. Источники загрязнения: 1. Промышленные предприятия. 2. ТЭК. 3. Бытовые отходы. 4. Отходы транспорта. 5. Отходы животноводства. 6. Химические вещества. Состав загрязнений: Твердые вещества, химические соединения, Me, Оксиды, Аэрозоли, Жидкости. Естественное, антропогенное.

Атмосфера, строение атмосферы, свойства, состав. Самоочищение атмосферы.

Атмосфера – воздушная оболочка Земли. Состав атмосферы: N2 – 78%, O2 – 21%, Ar – 0,9%, CO2 – 0,03%. Атмосфера делится на гомосферу и гетеросферу, граница между ними на высоте 100км. Гомосфера характеризуется однородным и устойчивым газовым составом. Выше этой границы хараетерен нарастающий уровень ионизации газов за счет фотодиссоциации.Свойства – озоновый слой, низкая плотность воздуха – закрывает возможность существования организмов (околоземные организмы). Способность атмосферы к самоочищению (ветер, осадки, лес).

Озоновый слой атмосферы, его значение, причины разрушения.

Термосфера, магнитосфера. Тропосферы 4/5 массы атмосферы.

Озоновый слой – 40 тон. 6500 раз ослабляет ультра-фиолетовое излучение.

Причины разрушения O3 озонового слоя: (1) Cl2 природное извержение, антропогенный фактор. ClFCH – фреоны, CH4FxClx-1. 1 молекула Cl2 разрушает 100000 молекул O3. (2) NO2, NxOy. Разложение азотных удобрений. выхлопные газы ракет, машин, ядерные взрывы в атмосфере, 1 молекула NO2=10 молекул O3. (3) H2.

Роль озона: 1. Защита от УФ. 2. Разрушение загрязнителей 3CO+O33CO2

Вредное действие озон оказывает в нижних слоях атмосферы:

0,000001 – доля полезного действия; 0,000001-0,000005 вредное вещество; больше 0,000005 ядовитое вещество (разрушение гемоглабина).

 Источники загрязнения атмосферы. Парниковый эффект.

Главные загрязнители: 1. CO2 – парниковый эффект. 2. CO – баланс верхних слоев. 3. NxOy (N20, NO, N2O3, NO2, N2O5) – смог, рестраторные заболевания. 4. SO2. 5. Фосфаты (гидросфера). 6. Тяжелые металлы Hg, Pb. 7. Нефть и нефтепродукты. 8. Пестициды. 9. Радиация.

 Гидросфера. Пресные и соленые воды. Источники загрязнения.

Гидросфера – водная оболочка Земли.

Литосфера. Строение. Почвы, значение, эрозия почв (водная, ветровая) – земная кора и верхняя мантия (200 км. вглубь). Кора : на земле 75 км. вглубь. на дне океана 5-10 км. вглубь. Состав: 50% - диоксид кремния; 25% - оксид Al; 10% - оксид Fe(3); оксиды K, Ca, Mn, P.

Земельные ресурсы : 30% - суша. S= 129 млн. км2

10% - пашни. 25% - пастбища, сенокосы. 43% - пустыни. 30% - горы.

Верхний слой литосферы – гумус. ГУМУС – конечный продукт разложения мертвых органических остатков, аморфное вещество, ( фенолы, сложные эфиры, карбоновые кислоты) плодородный слой почвы. Процесс образования гумуса – ГУМУФИКАЦИЯ. ДЕГРАДАЦИЯ ПОЧВЫ: - Эрозия – Загрязнение – Заболачивание, затопление – Опустынивание – Отчуждение. ЭРОЗИЯ – снесение верхнего слоя почвы водой или ветром. Причины потерь плодородных земель – Эрозия почвы – Затопление, заболачивание – Отведение земель для вне сельскохозяйственной деятельности. Почвообразующие факторы: - Климат – Геологическая основа – Рельеф – Время – Биота –

50 – 60 % - минеральная основа; 10% - органическая основа; 15% - воздух; 20 – 30 % - вода. Удерживать влагу могут: -глина – суглина- супесь –

Переход жизненно важных элементов в неорганические ( в почве):

орг.Р  фосфаты; орг.С  углекислый газ; орг.N  NO3; оргN2NH4+(через мочевину). ПЕСТИЦИДЫ: (токсичность – 1 место; средства борьбы с насекомыми). Фунгициды - борьба с заболеваниями растений; Гербициды – борьба с сорняками; Зооциды – борьба с вредителями при хранении; Дефолианты; Дефлоранты; Инсектициды – комары. Токсичные действия – Сильно токсичные – пдк < 50 мг/кг; высоко ядовитые – пдк < 100 мг/кг; средние – пдк до 1 г/кг; мало ядовитые более 1 г/кг. Канцерогенные – вызывают аллергические заболевания. Самые вредные – хлористые. (ДДТ)

Загрязнение литосферы. Твердые отходы (бытовые и промышленные). Утилизация бытовых отходов. Оценка качества литосферы.

Тяжелые металлы, пестициды, токсичные вещества.

 Загрязнение влияет на: - продукция биомассы – хоз. часть урожая – питательная ценность урожая – санитарно-гигиеническая ценность урожая.

ПЕСТИЦИДЫ: (токсичность – 1 место; средства борьбы с насекомыми). Фунгициды - борьба с заболеваниями растений; Гербициды – борьба с сорняками; Зооциды – борьба с вредителями при хранении; Дефолианты; Дефлоранты; Инсектициды – комары. Токсичные действия – Сильно токсичные – пдк < 50 мг/кг; высоко ядовитые – пдк < 100 мг/кг; средние – пдк до 1 г/кг; мало ядовитые более 1 г/кг. Канцерогенные – вызывают аллергические заболевания. Самые вредные – хлористые. (ДДТ)

БЫТОВЫЕ ТВЕРДЫЕ ОТХОДЫ ( ТБО). Выбросы до 250 кг. В год. Разложение – стекло: 1000 лет; полеэтелен – 200 лет. Утилизация ТБО – Захоронение – Мусоросжигание – Вторичная переработка – Компостирование, полное сбраживание. Переработка: стекло  стекловолокно, вторичное использование; резиновые отходы  бензин.

Компостирование ( органические отходы). Сбраживание( бактериями )  спирт. ПРОМЫШЛЕННЫЕ ОТХОДЫ:

-Добыча полезных ископаемых 7% продукции. - Топливоэнергитический комплекс ( силикаты и золы) – Нефтешламы - Шламы гальванических цехов. ОЧИСТКА: - Складирование на полигонах – Сжигание – Захоронение( токсичные отходы). ОЦЕНКА КАЧЕСТВА: ПДК млг на кг почвы или пищи. Анализ на содержание личинок мух, возбудителей заболеваний и глистов.

Рациональное природопользование.

Природопользование – это процесс использования природных ресурсов в целях удовлетворения материальных и культурных потребностей общества. Рациональное природопользование – изучение природных ресурсов, их бережная эксплуатация, охрана и воспроизводство с учетом настоящих и будующих потребностей общества и сохранение потребностей людей.

Условия эффективного использования почв: - Борьба с эрозией – Культурная обработка земли- грамотное использование удобрений – проведение мероприятий по мелиорации и рекультивации.

РЕКУЛЬТИВАЦИЯ– горнотехническая ( засыпка карьеров) – Биологическая ( группы живых организмов, деятельность которых приводит к восстановлению плодородия) – Лесная ( длительное применение до нескольких 10ов. Лет).

ПРИНЦИПЫ природопользования: - принцип примата природы, - принцип экологизации производства.

Экологический мониторинг.

Функции мониторинга: (1) контроль за состоянием объектов экосферы (2) контроль за источниками нарушений (3) моделирование и прогноз экологического состояния объектов экосферы (4) управление экологическими процессами. Сложность осуществления мониторинга обусловлена, в частности законом коммутативности, по которому человек воздействует на окружающую среду в короткий промежуток времени в той же степени, которую природа создает в течении столетий и даже тысячелетий. Все контролируемые показатели различают по группам: (1) функциональные (продуктивность, скорость изменения, круговорот веществ и т.п.) (2) структурные (абсолютные или относительные значения физических, химических, биологических параметров). Средства экологического контроля в свою очередь различают контактные и неконтактные. Контактные методы представлены следующими: газовая хроматография, полярография, кондуктометрия, купонометрия, потенциометрия, ионометрия, колометрия, рефрактометрия, люминесцентные измерения, термография, титрование, аккустические и механические измерения. Неконтакные методы основаны на использовании зондирующих полей – электромагнитных, акустических, гравиационных. Различают следующие виды моделирования: (1) использование фундаментальных законов (сохранения энергии, массы и т.п.) (2) установление закономерностей функционирования экосистемы (3) имитационное моделирование, когда составляется модель и в дальнейшем с ней эксперементируют.

Система экологического права.

ЭКОЛОГИЧЕСКОЕ ПРАВО – отрасль права, которая регулирует общественные отношения в сфере взаимодействия общества и природы. Источники права – конституция, законы и кодексы, указы и распоряжения министерств и ведомств, нормативные акты минестерств и ведомств, нормативные акты органов местного самоуправления. Максимальное наказание до 2х лет.

Оценка качества окружающей среды.

Качественная оценка – показание отдельных компонентов: воздух, вода, почва. Стандарты качества окр. природной среды: единые требования и нормативы, предъявляемые к состоянию окр среды и деятельности производственно-хозяйственных объектов.

В зависимости от методики установления требований качества, стандарты делятся на экологические и производственно-хозяйственные. ЭКОЛОГИЧЕСКИЕ СТАНДАРТЫ: определяют предельно-допустимые нормативы вредного антропогенного воздействия на окр среду, превышение которых создает угрозу сохранению оптимальных условий существования человека и его окружения. Предельно-допустимые нормативы: ПДК – предельно-допустимые концентрации загрязняющих веществ в атмосфере, водоемах; ПДН – предельно-допустимые нагрузки на природную среду( ПДН – носит региональный характер т.к. определяет воздействие на природно-территориальный комплекс). ПРОИЗВОДСТВЕННО-ХОЗЯЙСТВЕННЫЕ СТАНДАРТЫ: определяют предельно-допустимые параметры производственно-хозяйственной деятельности конкретных объектов с точки зрения экологической защиты природной среды: ПДВ – нормативы предельно-допустимых выбросов вредных веществ, химических и биологических воздействий.( Нормативы ПДВ в атмосферу, водоемы устанавливается для каждого стационарного источника отдельно).

Загрязнения, вносимые автотранспортом и промышленностью. Смог. Кислотные дожди. Оценка качества атмосферы.

В общем количестве выбросов вредных веществ в атмосферу над территорией России доминируют выбросы от стационарных источников (промышленность, ТЭЦ). Суммарный выброс загрязняющих веществ, скажем, в 91 году составил 53млн т (32-от промышленности, 21-от автотранспорта). Основные загрязнители:

1. CO – воздействует на нервную и сердечно-сосудистую системы.

2. Оксиды азота, в основном NO2 – взаимодействуя с углеводородами выхлопных газов, образуют фотохимический смог. В чистом виде приводят к отеку легких.

3. SO2 – накапливается в листьях и хвое, чем наносит урон лесам; раздражает слизистые оболочки.

4.Углеводороды (пары бензина, пентан, гексан…) – обладают наркотическим действием, вызывают головные боли, головокружение.

5. Альдегиды – раздражают слизистые оболочки.

6. Соединения свинца – нарушают синтез гемоглобина, провоцируют заболевания дыхательных путей, нервной системы…

7. Атмосферная пыль: сажа, содержащаяся в пыли, обладает большой адсорбционной способностью к тяжелым углеводородам, что делает ее опасной для здоровья человека.

Смог — любое видимое загрязнение воздуха, обычно в сочетании дыма, влаги и пыли. Различают смог лондонского типа (влажный), и лос-анджелесского типа (сухой или фотохимический); второй содержит продукты разложения загрязняющих веществ солнечными лучами. Первый тип наблюдается при пасмурной, туманной погоде, способствующей возрастанию концентрации сернистого ангидрида и трансформации его в аэрозоль серной кислоты; симптомы: удушье, резь в глазах, тошнота. Механизм образования фотохимического тумана: молекулы NxOy, содержащиеся в выхлопных газах, возбуждаются за счет энергии ультрафиолета, затем реагируют с кислородом, образуя озон; последний, реагируя с углеводородом выхлопов или выбросов нефтехимии, образует фотооксиданты, которые, накапливаясь при ясной безветренной погоде на улицах города, всячески вредят; симптомы: раздражение глаз, верхних дыхательных путей; понижается видимость, повреждаются зеленые насаждения, поверхность зданий.

Кислотные дожди — осадки, кислотность которых выше нормальной. Связаныс выбросами в атмосферу сернистого газа, сероводорода, окисла и диокисла азота, углекислого газа. Антропогенным источником SO2 является процесс сжигания ископаемого топлива. Происходят реакции: SO2+H2O=H2SO3+Q; H2SO3+O=H2SO4 или SO2+NO2+H2O=H2SO4+NO. Негативное воздействие: подкисление озер и рек, деградация лесов, вымывание биогенов из почвы, влияние на людей и изделия.

Оценка качества атмосферы.

Существуют критерии загрязнения для основных загрязнителей. Сейчас виды стандартов по охране атмосферного воздуха включают нормативы ПДК загрязняющих веществ (взвешенные частицы, аэрозоли, пыль; газообразные компоненты); нормативы биологического загрязнения (микробы, вирусы, аллергены); нормативы предельно допустимых уровней (ПДУ) вредных физических воздействий (звуковые колебания, электромагнитное воздействие, тепловое загрязнение, проникающая радиация, вибрация…); стандарты выбросов: нормативы ПДВ.

Гидросфера. Пресные и соленые воды. Источники загрязнения.

Гидросфера — водная оболочка Земли; масса (1,5-2,5)*1018 тонн; находится в виде паров и облаков, океанов и морей (91,3% массы) , ледников, подземных вод. Вода в природных условиях всегда содержит растворенные соли, газы, органические вещества. При концентрации солей до 1г/кг вода считается пресной, до 25 г/кг – солоноватой, более 25 г/кг – соленой. В пресных водах обычно преобладают ионы HCO3(-), Ca(2+), Mg(2+). По мере роста минерализации увеличивается концентрация SO4(-), Cl(-), Na(+), K(+). Пресная вода — 1% от общей массы.

Загрязнение вод проявляется в изменении физических и органических свойств, увеличении содержания сульфатов, хлоридов, нитратов, токсичных тяжелых металлов, сокращении растворенного в воде кислорода, появлении радиоактивных элементов, болезнетворных бактерий и других загрязнителей.

Загрязнители: химические (кислоты, щелочи, соли, нефтепродукты, пестициды, диоксины, тяжелые металлы, фенолы, аммонийный и нитритный азот), биологические (вирусы, бактерии, другие болезнетворные организмы, водоросли, дрожжевые и плесневые грибы), физические (радиоактивные элементы, взвешенные твердые частицы, тепло, органолептические (цвет, запах), шлам, песок, ил, глина).

Загрязнители:

1. Целлюлозно-бумажный комплекс, деревообработка: органические вещества (смолы, жиры, лигнины, фенол), аммонийный азот, сульфаты, вывешенные вещества.

2. Нефтегазодобыча: нефтепродукты, СПАВ, фенолы, аммонийный азот, сульфиды.

3. Машиностроение, металлообработка, металлургия: тяжелые металлы, взвешенные вещества, цианиды, аммонийный азот, нефтепродукты, смолы, фенолы, фотореагенты.

4. Химическая, нефтехимическая промышленность: фенолы, нефтепродукты, СПАВ, полициклические ароматические углеводороды, бензапирен, взвешенные вещества.

5. Горнодобывающая, угольная: флотореагенты, минеральные взвешенные вещества, фенолы.

6. Легкая, текстильная, пищевая: СПАВ, нефтепродукты, органические красители, органические вещества.

Загрязнение гидросферы.

1. Биологическое. Вызывается микроорганизмами и способными к брожению органическими веществами, приводит к бактериологическому заражению (инфекционный гепатит, холера, тиф, дизентерия, кишечные инфекции). Источники загрязнения органикой: пищевые предприятия, молочные, сахарные заводы, сыроварни, животноводство, птицеводство.

2. Химическое. В этом виде участвуют все виды промышленного, с/х производства, транспорт. Представляет собой изменение естественных химических свойств воды из-за увеличения в ней вредных примесей как неорганической (минеральные соли, кислоты, щелочи, глинистые частицы), так и органической природы (нефть и нефтепродукты, органические остатки, поверхностно-активные вещества, пестициды).

3. Физическое. Связано со сбросом тепла в воду, что приводит к потрясению всего биоценоза водоемов. Источником служат подогретые сбросные воды ТЭЦ и промышленности; повышение температуры изменяет естественные условия для водных организмов, снижает количество растворенного кислорода, изменяет скорость обмена веществ. Также к физическому загрязнению относятся радиоактивное загрязнение вод, попадание различных взвесей в водные системы.

Практическая работа.

Тестирование. Контрольные вопросы по данной теме.

(30.01.17) 2 часа.

Тема 7. Биоиндикация

Практическая работа: Изучение загрязнений территории по хвойным растениям и лишайникам.

(04.02.2017) 1 час

Биоиндикация основана на наблюдении за составом и численностью видов-индикаторов.

Биоиндикация — оценка качества среды обитания и её отдельных характеристик по состоянию биоты в природных условиях. Для учёта изменения среды под действием антропогенного фактора составляются списки индикаторных организмов — биоиндикаторов. Биоиндикаторы — виды, группы видов или сообщества, по наличию, степени развития, изменению морфологических, структурно-функциональных, генетических характеристик которых судят о качестве воды и состоянии экосистем. В качестве биоиндикаторов часто выступают лишайники, в водных объектах — сообщества бактерио-, фито-, зоопланктона, зообентоса, перифитона.

Общие принципы использования биоиндикаторов

Биоиндикаторы (от био и лат. indico — указываю, определяю) — организмы, присутствие, количество или особенности развития которых служат показателями естественных процессов, условий или антропогенных изменений среды обитания. Их индикаторная значимость определяется экологической толерантностью биологической системы. В пределах зоны толерантности организм способен поддерживать свой гомеостаз. Любой фактор, если он выходит за пределы «зоны комфорта» для данного организма, является стрессовым. В этом случае организм реагирует ответной реакцией различной интенсивности и длительности, проявление которой зависит от вида и является показателем его индикаторной ценности. Именно ответную реакцию определяют методы биоиндикации. Биологическая система реагирует на воздействие среды в целом, а не только на отдельные факторы, причем амплитуда колебаний физиологической толерантности модифицируется внутренним состоянием системы — условиями питания, возрастом, генетически контролируемой устойчивостью.

Многолетний опыт ученых разных стран по контролю состояния окружающей среды показал преимущества, которыми обладают живые индикаторы:

в условиях хронических антропогенных нагрузок могут реагировать даже на относительно слабые воздействия вследствие кумулятивного эффекта; реакции проявляются при накоплении не которых критических значений суммарных дозовых нагрузок;

суммируют влияние всех без исключения биологически важных воздействий и отражают состояние окружающей среды в целом, включая ее загрязнение и другие антропогенные изменения;

исключают необходимость регистрации химических и физических параметров, характеризующих состояние окружающей среды;

фиксируют скорость происходящих изменений;

вскрывают тенденции развития природной среды;

указывают пути и места скоплений в экологических системах различного рода загрязнений и ядов, возможные пути их попадания в пищу человека;

позволяют судить о степени вредности любых синтезируемых человеком веществ для живой природы и для него самого, при чем дают возможность контролировать их действие.

Выделяют две формы отклика живых организмов, используемых в целях биоиндикации, — специфическую и неспецифическую. В первом случае происходящие изменения связаны с действием одного какого-либо фактора. При неспецифической биоиндикации различные антропогенные факторы вызывают одинаковые ре акции.

В зависимости от типа ответной реакции биоиндикаторы под разделяют на чувствительные и кумулятивные. Чувствительные биоиндикаторы реагируют на стресс значительным отклонением от жизненных норм, а кумулятивные накапливают антропогенное воздействие, значительно превышающее нормальный уровень в природе, без видимых изменений.

В качестве биоиндикаторов могут быть использованы представители всех «царств» живой природы. Для биоиндикации не при годны организмы, поврежденные болезнями, вредителями и паразитами. Идеальный биологический индикатор должен удовлетворять ряду требований:

быть типичным для данных условий;

иметь высокую численность в исследуемом экотопе;

обитать в данном месте в течение ряда лет, что дает возможность проследить динамику загрязнения;

находиться в условиях, удобных для отбора проб;

давать возможность проводить прямые анализы без предварительного концентрирования проб;

характеризоваться положительной корреляцией между концентрацией загрязняющих веществ в организме-индикаторе и объекте исследования;

использоваться в естественных условиях его существования; »иметь короткий период онтогенеза, чтобы была возможность отслеживания влияния фактора на последующие поколения.

Ответная реакция биоиндикатора на определенное физическое или химическое воздействие должна быть четко выражена, т.е. специфична, легко регистрироваться визуально или с помощью приборов.

Для биоиндикации необходимо выбирать наиболее чувствительные сообщества, характеризующиеся максимальными скоростью отклика и выраженностью параметров. Например, в водных эко системах наиболее чувствительными являются планктонные со общества, которые быстро реагируют на изменение среды благо даря короткому жизненному циклу и высокой скорости воспроизводства. Бентосные сообщества, где организмы имеют достаточно длинный жизненный цикл, более консервативны: перестройки происходят в них при длительном хроническом загрязнении, приводящем к необратимости процессов.

К методам биоиндикации, которые можно применять при ис следовании экосистемы, относится выявление в изучаемой зоне редких и исчезающих видов. Список таких организмов, по сути, является набором индикаторных видов, наиболее чувствительных к антропогенному воздействию.

Особенности использования растений в качестве биоиндикаторов

С помощью растений можно проводить биоиндикацию всех природных сред. Индикаторные растения используются при оценке механического и кислотного состава почв, их плодородия, увлажнения и засоления, степени минерализации грунтовых вод и степени загрязнения атмосферного воздуха газообразными соединениями, а также при выявлении трофических свойств водоемов и степени их загрязнения поллютантами. Например, на содержание в почве свинца указывают виды овсяницы (Festuca ovina и др.), полевицы (Agrostis tenuis и др.); цинка — виды фиалки (Viola tricolor и др.), ярутки (Tlaspi alpestre и др.); меди и кобальта — смолевки (Silene vulgaris и др.), многие злаки и мхи.

Чувствительные фитоиндикаторы указывают на присутствие загрязняющего вещества в воздухе или почве ранними морфологическими реакциями — изменением окраски листьев (появление хлорозов; желтая, бурая или бронзовая окраска), различной фор мы некрозами, преждевременным увяданием и опаданием листвы. У многолетних растений загрязняющие вещества вызывают изменение размеров, формы, количества органов, направления роста побегов или изменение плодовитости. Подобные реакции обычно неспецифичны.

Б. В. Виноградов классифицировал индикаторные признаки растений как флористические, физиологические, морфологические к фитоценотические. Флористическими признаками являются различия состава растительности изучаемых участков, сформировавшиеся вследствие определенных экологических условий. Индикаторное значение имеет как присутствие, так и отсутствие вида. К физиологическим признакам относятся особенности обмена веществ растений, к анатомо-морфологическим признакам — особенности внутреннего и внешнего строения, различного рода аномалии развития и новообразования, к фитоценотическим при знакам – особенности структуры растительного покрова: обилие и рассеянность видов растений, ярусность, мозаичность, степень сомкнутости.

Очень часто в целях биоиндикации используются различные аномалии роста и развития растения — отклонения от общих закономерностей. Ученые систематизировали их в три основные группы, связанные: (1) с торможением или стимулированием нормального роста (карликовость и гигантизм); (2) с деформациями стеблей, листьев, корней, плодов, цветков и соцветий; (3) с возникновением новообразований (к этой группе аномалий роста относятся также опухоли).

Гигантизм и карликовость многие исследователи считают уродствами. Например, избыток в почве меди вдвое уменьшает размеры калифорнийского мака, а избыток свинца приводит к карликовости смолевки.

В целях биоиндикации представляют интерес следующие де формации растений:

фасциация — лентовидное уплощение и сращение стеблей, корней и цветоносов;

махровость цветков, в которых тычинки превращаются в лепестки;

пролификация — прорастание цветков и соцветий;

асцидия — воронковидные, чашевидные и трубчатые листья у растений с пластинчатыми листьями;

редукция — обратное развитие органов растений, вырождение;

нитевидность — нитчатая форма листовой пластинки;

филлодий тычинок — превращение их в плоское листовидное образование.

Биомониторинг может осуществляться путем наблюдений за отдельными растениями-индикаторами, популяцией определенного вида и состоянием фитоценоза в целом. На уровне вида обычно производят специфическую индикацию какого-то одного загрязнителя, а на уровне популяции или фитоценоза — общего состояния природной среды.

Особенности использования животных в качестве биоиндикаторов

Позвоночные животные также служат хорошими индикатора ми состояния среды благодаря следующим особенностям:

являясь консументами, они находятся на разных трофических уровнях экосистем и аккумулируют через пищевые цепи загрязняющие вещества;

обладают активным обменом веществ, что способствует быстрому проявлению воздействия негативных факторов среды на организм;

имеют хорошо дифференцированные ткани и органы, которые обладают разной способностью к накоплению токсических веществ и неоднозначностью физиологического отклика, что позволяет исследователю иметь широкий набор тестов на уровне тканей, органов и функций;

сложные приспособления животных к условиям среды и чет кие поведенческие реакции наиболее чувствительны к антропогенным изменениям, что дает возможность непосредственно наблюдать и анализировать быстрые отклики на оказываемое воз действие;

животных с коротким циклом развития и многочисленным потомством можно использовать для проведения ряда длительных наблюдений и прослеживать воздействие фактора на последующие поколения; для долгоживущих животных можно выбрать особо чувствительные тесты в соответствии с особо уязвимыми этапами онтогенеза.

Основное преимущество использования позвоночных животных в качестве биоиндикаторов заключается в их физиологической близости к человеку. Основные недостатки связаны со сложностью их обнаружения в природе, поимки, определения вида, а также с длительностью морфо-анатомических наблюдений. Кроме того, эксперименты с животными зачастую дороги, требуют многократной повторяемости для получения статистически достоверных выводов.

Оценка и прогнозирование состояния природной среды с при влечением позвоночных животных проводятся на всех уровнях их организации. На организменном уровне с помощью сравнительного анализа оцениваются морфо-анатомические, поведенческие и физиолого-биохимические показатели.

Морфо-анатомические показатели описывают особенности внешнего и внутреннего строений животных и их изменение под воздействием определенных факторов (депигментация, изменение покровов, структуры тканей и расположения органов, возникновение уродств, опухолей и других патологических проявлений).

Поведенческие и физиолого-биохимические параметры особенно чувствительны к изменению внешней среды. Токсиканты, проникая в кости или кровь позвоночных животных, сразу же воз действуют на функции, обеспечивающие жизнедеятельность. Даже при узкоспецифичном влиянии токсиканта на определенную функцию ее сдвиги отражаются на состоянии всего организма вследствие взаимосвязанности процессов жизнедеятельности. Достаточно отчетливо присутствие токсикантов проявляется в нарушении ритма дыхания, сердечных сокращений, скорости пище варения, ритмике выделений, продолжительности циклов размножения.

Для того чтобы иметь возможность сравнивать материал, со бранный разными исследователями в различных районах, набор видов-индикаторов должен быть един и невелик. Вот некоторые критерии пригодности различных видов млекопитающих для биоиндикационных исследований:

принадлежность к разным звеньям трофической цепи — рас тительноядным, насекомоядным, хищным млекопитающим;

оседлость или отсутствие больших миграций;

широкий ареал распространения (сравнительно высокая эвритопность), т.е. этот критерий исключает использование в качестве тест-индикаторов эндемиков;

принадлежность к естественным сообществам: критерий исключает синантропные виды, питающиеся вблизи жилища чело века и неадекватно характеризующие микроэлементный состав загрязнения данного региона;

численность вида должна обеспечивать достаточный матери ал для анализа;

простота и доступность методов добывания видов.

Анализируя по данным критериям представителей всех отрядов млекопитающих, встречающихся на территории стран СНГ, можно остановиться на семи видах: обыкновенная бурозубка (Sores areneus), европейский крот (Talpa europaea), алтайский крот (Talpa altaica), бурый медведь (Ursus arctos), лось (Alces alces), рыжая полевка (Clethrionomys glareolus), красная полевка (Clethrionomys rubilus).

Симбиотические методы в биоиндикации

Симбиоз широко распространен в природе, а симбиотические ассоциации часто играют ключевую роль в поддержании нормального функционирования наземных, пресноводных и морских эко систем. Симбиоз грибов и азотфиксирующих бактерий с высшими растениями и водорослей с грибами обеспечил процветание этих ассоциаций в наземной среде. Лишайники, симбиотическая ассоциация водорослей и грибов, очень чувствительны к качеству среды и уже давно используются как традиционные биомаркеры состояния атмосферного воздуха. Мадрепоровые кораллы (скле-рактинии) — симбиоз одноклеточных водорослей зооксантелл с кишечнополостными животными, определяющий важную ландшафтообразующую роль этой ассоциации в тропических морях. Все более значительной признается роль симбиотических микроорганизмов в трофике практически всех видов организмов. Прямо или косвенно регулируя численность своих хозяев, симбионты оказывают существенное влияние на их динамику численности и структуру популяции. Биоразнообразие симбионтов (паразитов, комменсалов, мутуалистов), как правило, значительно превышает разнообразие их хозяев. Так, на Большом Барьерном рифе (коралловая постройка) водится около 2 000 видов рыб, а их паразитофауна представлена более чем 20 000 видов; три вида австралийских промысловых креветок в качестве симбионтов имеют 38 видов организмов из разных систематических групп.

Помимо уточнения оценки биоразнообразия по числу видов учет симбионтов позволяет получать достоверную информацию о качестве среды, так как степень интенсивности инвазии (относи тельное количество хозяев, имеющих симбионтов) и экстенсивность инвазии (среднее количество симбионтов на хозяине) на прямую зависят от условий, в которых находится популяция хозяев. Многие симбионты чувствительны к изменениям внешней среды, в частности симбионты водных организмов — к загрязнению и опреснению, а симбионты наземных организмов — к радионуклидам. При оценке разнообразия фауны симбионтов широко используют статистические методы. Учет симбиотических, в том числе и паразитических, организмов, а также исследование состояния симбиотических ассоциаций позволяют более точно оценить биоразнообразие и характер динамических процессов в экосистемах и могут быть рекомендованы в качестве важных элементов экодиагностических исследований.

Области применения биоиндикаторов

Оценка качества воздуха

От загрязнения воздуха страдают все живые организмы, но особенно растения. По этой причине растения, в том числе низшие, наиболее пригодны для обнаружения начального изменения состава воздуха. Соответствующие индексы дают количественное представление о токсичном эффекте загрязняющих воздух веществ.

Лишайники являются симбиотическими организмами. Многими исследователями показана их пригодность для целей биоиндикации. Они обладают весьма специфическими свойствами, так как реагируют на изменение состава атмосферы, обладают отличной от других организмов биохимией, широко распространены по разным типам субстратов, начиная со скал и кончая корой и листьями деревьев, удобны для экспозиции в загрязненных районах.

Выделяют четыре основные экологические группы лишайников: эпифитные — растущие на коре деревьев и кустарников; зпиксильные — растущие на обнаженной древесине; эпигейные — на почве; эпилитные — на камнях. Из них наиболее чувствительны к загрязнению воздуха эпифитные виды. С помощью лишайников можно получать вполне достоверные данные об уровне загрязнения воздуха. При этом можно выделить группу химических соединений и элементов, к действию которых лишайники обладают сверхповышенной чувствительностью: оксиды серы и азота, фторо- и хлороводород, а также тяжелые металлы. Многие лишайники погибают при невысоких уровнях загрязнения атмосферы эти ми веществами. Процедура определения качества воздуха с помощью лишайников носит название лихеноиндикации.

Оценку чистоты воздуха можно проводить с помощью высших растений. Например, голосеменные — отличные индикаторы чистоты атмосферы. Возможно также изучение мутаций в волосках тычиночных нитей традесканции. Французские ученые подмети ли, что при увеличении в воздухе окиси углерода и окислов азота, выбрасываемых двигателями внутреннего сгорания, окраска ее тычиночных нитей меняется от синей к розовой. По следствия нарушений в индивидуальном развитии растений могут быть выявлены также по частоте встречаемости морфологических отклонений (фенодевиантов), величине показателей флуктуирующей асимметрии (отклонение от совершенной билатеральной и радиальной симметрии), методом анализа сложноорганизованных комплексных структур (фрактал-анализ). Уровни любых отклонений от нормы оказываются минимальными лишь при оптимальных условиях и возрастают при любых стрессирующих воздействиях окружающий среда загрязнение биоиндикатор

Оценка качества воды

Для биологической индикации качества вод могут быть использованы практически все группы организмов, населяющие водоемы: планктонные и бентосные беспозвоночные, простейшие, водоросли, макрофиты, бактерии и рыбы. Каждая из них, выступая в роли биологического индикатора, имеет свои преимущества и недостатки, которые определяют границы ее использования при решении задач биоиндикации, так как все эти группы играют ведущую роль в общем круговороте веществ в водоеме. Организмы, которые обычно используют в качестве биоиндикаторов, ответственны за самоочищение водоема, участвуют в создании первичной продукции, осуществляют трансформацию веществ и энергии в водных экосистемах. Всякое заключение по результатам биологического исследования строится на основании совокупности всех полученных данных, а не на основании единичных находок индикаторных организмов. Как при выполнении исследования, так и при оценке полученных результатов необходимо иметь в виду возможность случайных, местных загрязнений в точке наблюдения. Например, разлагающиеся растительные остатки, труп лягушки или рыбы могут вызывать местные изменения в характере населения водоема.

Диагностика почв

Теоретической предпосылкой применения почвенно-зоологического метода для целей диагностики почв является сформулированное М.С.Гиляровым в 1949 г. представление об «экологическом стандарте» вида — потребности вида в определенном комплексе условий среды. Каждый вид в пределах своего ареала встречается только в тех местообитаниях, которые обеспечивают полный комплекс необходимых для проявления жизнедеятельности условий. Амплитуда варьирования отдельных факторов среды характеризует экологическую пластичность вида. Эврибионты мало пригодны для индикационных целей, тогда как стенобионты служат хорошими индикаторами определенных условий среды и свойств субстрата. Это положение представляет собой общий теоретический принцип в биологической диагностике. Однако использование для индикации одного вида не дает полной уверенности в правильности выводов (здесь имеет место «правило смены местообитаний» и как следствие смена экологических характеристик вида). Лучше исследовать весь комплекс организмов, из которых одни могут быть индикаторами на влажность, другие — на температуру, третьи — на химический или механический со став. Чем больше общих видов почвенных животных встречается на сравниваемых участках, тем с большей долей вероятности можно судить о сходстве их режимов, а следовательно, о единстве почвообразовательного процесса. Менее других полезны микроскопические формы — простейшие и микроартроподы (клещи, ногохвостки). Их представители отличаются космополитизмом в силу того, что почва для них не выступает как единая среда обитания: они живут в системе пор, капилляров, полостей, которые можно найти в любой почве. Из микроартропод наиболее хорошо изучены индикаторные свойства панцирных клещей. Состав их комплексов сообществ зависит не только от почвенных условий, но и от характера и флористического состава растительности, поэтому данный объект перспективно использовать для индикации повреждающих воздействий на почву.

Особенно ценны и удобны для индикационных работ сообщества крупных беспозвоночных (дождевые черви, многоножки, личинки насекомых). Так, стафилиниды рода Bledius и чернотелки рода Belopus показательны для солончаково-солонцовых почв, многоножки-кивсяки, некоторые мокрецы и легочные моллюски служат индикаторами содержания в почве извести. Дождевые черви Octolasium lacteum и некоторые виды проволочников являются показателями высокого содержания кальция в грунтовых водах.

Интерес представляет почвенно-альгологическая диагностика, в основе которой лежит положение о том, что зональности почв и растительности соответствует зональность водорослевых группировок. Она проявляется в общем видовом составе и комплексе доминантных видов водорослей, наличии специфических видов, характере распространения по почвенному профилю, преобладании определенных жизненных форм.

 Биотестирование окружающей среды

Задачи и приёмы биотестирования качества среды

В выявлении антропогенного загрязнения среды наряду с химико-аналитическими методами находят применение приёмы, основанные на оценке состояния отдельных особей, подвергающихся воздействию загрязнённой среды, а также их органов, тканей и клеток. Их применение вызвано технической усложнённостью и ограниченностью информации, которую могут предоставить химические методы. Кроме того, гидрохимические и химико-аналитические методы могут оказаться неэффективными из-за недостаточно высокой их чувствительности. Живые организмы способны воспринимать более высокие концентрации веществ, чем любой аналитический датчик, в связи с чем биота может быть подвержена токсическим воздействиям, не регистрируемым техническими средствами.

Биоиндикация предусматривает выявление уже состоявшегося или накапливающегося загрязнения по индикаторным видам живых организмов и экологическим характеристикам сообществ организмов. Пристальное внимание в настоящее время уделяется приёмам биотестирования, т.е. использования в контролируемых условиях биологических объектов в качестве средства выявления суммарной токсичности среды. Биотестирование представляет собой методический приём, основанный на оценке действия фактора среды, в том числе и токсичного, на организм, его отдельную функцию или систему органов и тканей. Кроме выбора биотеста существенную роль играет выбор тест-реакции – того параметра организма, который измеряется при тестировании.

Основные подходы биотестирования

«Подходами» можно условно назвать группы методов, характеризующих сходные процессы, происходящие с тест-объектами под влиянием антропогенных факторов. Основные подходы:

Биохимический подход

Генетический подход

Морфологический подход

Физиологический подход

Биофизический подход

Иммунологический подход

Биохимический подход

Стрессовое воздействие среды можно оценивать по эффективности биохимических реакций, уровню ферментативной активности и накоплению определённых продуктов обмена. Изменение содержания в организме определённых биохимических соединений, показателей базовых биохимических процессов и структуры ДНК в результате биохимических реакций могут обеспечить необходимую информацию о реакции организма в ответ на стрессовое воздействие.

Генетический подход

Наличие и степень проявления генетических изменений характеризует мутагенную активность среды, а возможность сохранения генетических изменений в популяциях отражает эффективность функционирования иммунной системы организмов.

В норме большинство генетических нарушений распознаются и элиминируются клеткой, например путем апоптоза за счет внутриклеточных систем или посредством иммунной системы. Достоверное превышение спонтанного уровня таких нарушений является индикатором стресса. Генетические изменения могут выявляться на генном, хромосомном и геномном уровнях. Принято выделять следующие типы мутаций. Генные, или точковые, — их делят на две группы: замены оснований в ДНК и вставки или выпадения нуклеотидов, приводящие к сдвигу рамки считывания генетического кода. Генные мутации делят также на прямые и об ратные (реверсии). Мутации типа сдвига рамки считывания значительно менее склонны к спонтанным реверсиям, чем мутации типа замен оснований. Хромосомные перестройки (аберрации) заключаются в различных нарушениях структуры хромосом. Геномные мутации — изменение количества хромосом в ядре.

Для диагностики воздействия загрязнений на морфологические характеристики применяются методы оценки флуктуирующей асимметрии.

В качестве тест-функций применяются физиологические параметры пресноводных беспозвоночных гидробионтов разных уровней филогенеза.

Иммунологический подход при оценке состояния окружающей среды заключается в изучении изменений врождённого и приобретённого иммунитета у беспозвоночных и позвоночных животных.

Практическая работа: Изучение загрязнений территории по хвойным растениям и лишайникам.

(1 час)

Тема 8. Закрепление всего пройденного материала. Тестирование. Контрольные вопросы.

(20.03.17) 1 час


По теме: методические разработки, презентации и конспекты

Введение в экологию. Методы исследования в экологии.

Уровни орагнизации жизни.Методы исследования....

введение в экологию. презентации к урокам экологии 5 класс

некоторые темы экологии 5 класса в презентациях к урокам...

Лекция по теме "Экология человека"

Лекции используются в 11 классе, где уроки ведут по программе углубленного изучения биологии....

Лекция по теме "Экология человека"

Лекции используются в 11 классе, где уроки ведут по программе углубленного изучения биологии....

Рецензия на материал лекции проекта «Общее дело» Общественной организации «Общее дело»

Представлена рецензия на материал лекции  проекта «Общее дело» Общественной организации «Общее дело» ....

Лекция "Введение. Повторение основных разделов школьного курса"

Повторяем самое элементарное и необходимое из школьного курса : отрицательные числа, простейшие уравнения и неравенства....

Конспект занятия "Введение в экологию. Что такое экология?"

Конспект вводного занятия по программе "Мир экологии"...