РАБОЧАЯ ПРОГРАММА. АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА (УГЛУБЛЕННЫЙ УРОВЕНЬ). 10Б КЛАСС. (2023-2024)
рабочая программа по алгебре (10 класс)
РАБОЧАЯ ПРОГРАММА. АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА (УГЛУБЛЕННЫЙ УРОВЕНЬ). 10Б КЛАСС. (2023-2024)
Скачать:
Предварительный просмотр:
Аннотация к рабочей программе
Предмет | Алгебра и начала математического анализа (углубленный уровень) |
Класс | 10 |
Нормативная база | Рабочая программа составлена на основе: 1. Приказа Минобрнауки России от 17.05.2012 № 413 «Об утверждении федерального государственного образовательного стандарта среднего общего образования» (с изменениями и дополнениями от 12.08.2022 № 732);2.Федеральной образовательной программы среднего общего образования (Приказ Минпросвещения России от 18.05.2023 371 «Об утверждении федеральной образовательной программы среднего общего образования"); 3. Основной образовательной программы среднего общего образования МАОУ Абатская СОШ №1, протокол педагогического совета от 30.08.2023 № 18; 4. Приказа Минпросвещения от 21.09.2022 № 858 «Об утверждении федерального перечня учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность, и установления предельного срока использования исключенных учебников»; 5. Учебного плана МАОУ Абатская СОШ №1 на 2023-2024 учебный год. |
Учебник |
|
Основные цели и задачи реализации содержания курса |
|
Срок реализации | 2023-2024 учебный год |
Место курса в учебном плане | На изучение учебного курса «Алгебра и начала математического анализа» (углубленный уровень) отводится 136 часов (4 часа в неделю) |
Структура курса |
|
Структура рабочей программы |
|
Предварительный просмотр:
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Учебный курс «Алгебра и начала математического анализа» является одним из наиболее значимых в программе среднего общего образования, поскольку, с одной стороны, он обеспечивает инструментальную базу для изучения всех естественно-научных курсов, а с другой стороны, формирует логическое и абстрактное мышление обучающихся на уровне, необходимом для освоения информатики, обществознания, истории, словесности и других дисциплин. В рамках данного учебного курса обучающиеся овладевают универсальным языком современной науки, которая формулирует свои достижения в математической форме.
Учебный курс алгебры и начал математического анализа закладывает основу для успешного овладения законами физики, химии, биологии, понимания основных тенденций развития экономики и общественной жизни, позволяет ориентироваться в современных цифровых и компьютерных технологиях, уверенно использовать их для дальнейшего образования и в повседневной жизни. В то же время овладение абстрактными и логически строгими конструкциями алгебры и математического анализа развивает умение находить закономерности, обосновывать истинность, доказывать утверждения с помощью индукции и рассуждать дедуктивно, использовать обобщение и конкретизацию, абстрагирование и аналогию, формирует креативное и критическое мышление.
В ходе изучения учебного курса «Алгебра и начала математического анализа» обучающиеся получают новый опыт решения прикладных задач, самостоятельного построения математических моделей реальных ситуаций, интерпретации полученных решений, знакомятся с примерами математических закономерностей в природе, науке и искусстве, с выдающимися математическими открытиями и их авторами.
Учебный курс обладает значительным воспитательным потенциалом, который реализуется как через учебный материал, способствующий формированию научного мировоззрения, так и через специфику учебной деятельности, требующей продолжительной концентрации внимания, самостоятельности, аккуратности и ответственности за полученный результат.
В основе методики обучения алгебре и началам математического анализа лежит деятельностный принцип обучения.
В структуре учебного курса «Алгебра и начала математического анализа» выделены следующие содержательно-методические линии: «Числа и вычисления», «Функции и графики», «Уравнения и неравенства», «Начала математического анализа», «Множества и логика». Все основные содержательно-методические линии изучаются на протяжении двух лет обучения на уровне среднего общего образования, естественно дополняя друг друга и постепенно насыщаясь новыми темами и разделами. Данный учебный курс является интегративным, поскольку объединяет в себе содержание нескольких математических дисциплин, таких как алгебра, тригонометрия, математический анализ, теория множеств, математическая логика и другие. По мере того как обучающиеся овладевают всё более широким математическим аппаратом, у них последовательно формируется и совершенствуется умение строить математическую модель реальной ситуации, применять знания, полученные при изучении учебного курса, для решения самостоятельно сформулированной математической задачи, а затем интерпретировать свой ответ.
Содержательно-методическая линия «Числа и вычисления» завершает формирование навыков использования действительных чисел, которое было начато на уровне основного общего образования. На уровне среднего общего образования особое внимание уделяется формированию навыков рациональных вычислений, включающих в себя использование различных форм записи числа, умение делать прикидку, выполнять приближённые вычисления, оценивать числовые выражения, работать с математическими константами. Знакомые обучающимся множества натуральных, целых, рациональных и действительных чисел дополняются множеством комплексных чисел. В каждом из этих множеств рассматриваются свойственные ему специфические задачи и операции: деление нацело, оперирование остатками на множестве целых чисел, особые свойства рациональных и иррациональных чисел, арифметические операции, а также извлечение корня натуральной степени на множестве комплексных чисел. Благодаря последовательному расширению круга используемых чисел и знакомству с возможностями их применения для решения различных задач формируется представление о единстве математики как науки и её роли в построении моделей реального мира, широко используются обобщение и конкретизация.
Линия «Уравнения и неравенства» реализуется на протяжении всего обучения на уровне среднего общего образования, поскольку в каждом разделе Программы предусмотрено решение соответствующих задач. В результате обучающиеся овладевают различными методами решения рациональных, иррациональных, показательных, логарифмических и тригонометрических уравнений, неравенств и систем, а также задач, содержащих параметры. Полученные умения широко используются при исследовании функций с помощью производной, при решении прикладных задач и задач на нахождение наибольших и наименьших значений функции. Данная содержательная линия включает в себя также формирование умений выполнять расчёты по формулам, преобразования рациональных, иррациональных и тригонометрических выражений, а также выражений, содержащих степени и логарифмы. Благодаря изучению алгебраического материала происходит дальнейшее развитие алгоритмического и абстрактного мышления обучающихся, формируются навыки дедуктивных рассуждений, работы с символьными формами, представления закономерностей и зависимостей в виде равенств и неравенств. Алгебра предлагает эффективные инструменты для решения практических и естественно-научных задач, наглядно демонстрирует свои возможности как языка науки.
Содержательно-методическая линия «Функции и графики» тесно переплетается с другими линиями учебного курса, поскольку в каком-то смысле задаёт последовательность изучения материала. Изучение степенной, показательной, логарифмической и тригонометрических функций, их свойств и графиков, использование функций для решения задач из других учебных предметов и реальной жизни тесно связано как с математическим анализом, так и с решением уравнений и неравенств. При этом большое внимание уделяется формированию умения выражать формулами зависимости между различными величинами, исследовать полученные функции, строить их графики. Материал этой содержательной линии нацелен на развитие умений и навыков, позволяющих выражать зависимости между величинами в различной форме: аналитической, графической и словесной. Его изучение способствует развитию алгоритмического мышления, способности к обобщению и конкретизации, использованию аналогий.
Содержательная линия «Начала математического анализа» позволяет существенно расширить круг как математических, так и прикладных задач, доступных обучающимся, так как у них появляется возможность строить графики сложных функций, определять их наибольшие и наименьшие значения, вычислять площади фигур и объёмы тел, находить скорости и ускорения процессов. Данная содержательная линия открывает новые возможности построения математических моделей реальных ситуаций, позволяет находить наилучшее решение в прикладных, в том числе социально-экономических, задачах. Знакомство с основами математического анализа способствует развитию абстрактного, формально-логического и креативного мышления, формированию умений распознавать проявления законов математики в науке, технике и искусстве. Обучающиеся узнают о выдающихся результатах, полученных в ходе развития математики как науки, и об их авторах.
Содержательно-методическая линия «Множества и логика» включает в себя элементы теории множеств и математической логики. Теоретико-множественные представления пронизывают весь курс школьной математики и предлагают наиболее универсальный язык, объединяющий все разделы математики и её приложений, они связывают разные математические дисциплины и их приложения в единое целое. Поэтому важно дать возможность обучающемуся понимать теоретико-множественный язык современной математики и использовать его для выражения своих мыслей. Другим важным признаком математики как науки следует признать свойственную ей строгость обоснований и следование определённым правилам построения доказательств. Знакомство с элементами математической логики способствует развитию логического мышления обучающихся, позволяет им строить свои рассуждения на основе логических правил, формирует навыки критического мышления.
В учебном курсе «Алгебра и начала математического анализа» присутствуют основы математического моделирования, которые призваны способствовать формированию навыков построения моделей реальных ситуаций, исследования этих моделей с помощью аппарата алгебры и математического анализа, интерпретации полученных результатов. Такие задания вплетены в каждый из разделов программы, поскольку весь материал учебного курса широко используется для решения прикладных задач. При решении реальных практических задач обучающиеся развивают наблюдательность, умение находить закономерности, абстрагироваться, использовать аналогию, обобщать и конкретизировать проблему. Деятельность по формированию навыков решения прикладных задач организуется в процессе изучения всех тем учебного курса «Алгебра и начала математического анализа».
На изучение учебного курса «Алгебра и начала математического анализа» отводится 136 часов (4 часа в неделю).
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО КУРСА
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
1) гражданского воспитания:
сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества, представление о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и другое), умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;
2) патриотического воспитания:
сформированность российской гражданской идентичности, уважения к прошлому и настоящему российской математики, ценностное отношение к достижениям российских математиков и российской математической школы, использование этих достижений в других науках, технологиях, сферах экономики;
3) духовно-нравственного воспитания:
осознание духовных ценностей российского народа, сформированность нравственного сознания, этического поведения, связанного с практическим применением достижений науки и деятельностью учёного, осознание личного вклада в построение устойчивого будущего;
4) эстетического воспитания:
эстетическое отношение к миру, включая эстетику математических закономерностей, объектов, задач, решений, рассуждений, восприимчивость к математическим аспектам различных видов искусства;
5) физического воспитания:
сформированность умения применять математические знания в интересах здорового и безопасного образа жизни, ответственное отношение к своему здоровью (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность), физическое совершенствование при занятиях спортивно-оздоровительной деятельностью;
6) трудового воспитания:
готовность к труду, осознание ценности трудолюбия, интерес к различным сферам профессиональной деятельности, связанным с математикой и её приложениями, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы, готовность и способность к математическому образованию и самообразованию на протяжении всей жизни, готовность к активному участию в решении практических задач математической направленности;
7) экологического воспитания:
сформированность экологической культуры, понимание влияния социально-экономических процессов на состояние природной и социальной среды, осознание глобального характера экологических проблем, ориентация на применение математических знаний для решения задач в области окружающей среды, планирование поступков и оценки их возможных последствий для окружающей среды;
8) ценности научного познания:
сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, понимание математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации, овладение языком математики и математической культурой как средством познания мира, готовность осуществлять проектную и исследовательскую деятельность индивидуально и в группе.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Познавательные универсальные учебные действия
Базовые логические действия:
выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями, формулировать определения понятий, устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;
воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие, условные;
выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях, предлагать критерии для выявления закономерностей и противоречий;
делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;
проводить самостоятельно доказательства математических утверждений (прямые и от противного), выстраивать аргументацию, приводить примеры и контрпримеры, обосновывать собственные суждения и выводы;
выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).
Базовые исследовательские действия:
использовать вопросы как исследовательский инструмент познания, формулировать вопросы, фиксирующие противоречие, проблему, устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;
проводить самостоятельно спланированный эксперимент, исследование по установлению особенностей математического объекта, явления, процесса, выявлению зависимостей между объектами, явлениями, процессами;
самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;
прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.
Работа с информацией:
выявлять дефициты информации, данных, необходимых для ответа на вопрос и для решения задачи;
выбирать информацию из источников различных типов, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
структурировать информацию, представлять её в различных формах, иллюстрировать графически;
оценивать надёжность информации по самостоятельно сформулированным критериям.
Коммуникативные универсальные учебные действия
Общение:
воспринимать и формулировать суждения в соответствии с условиями и целями общения, ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;
в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения, сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций, в корректной форме формулировать разногласия, свои возражения;
представлять результаты решения задачи, эксперимента, исследования, проекта, самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории.
Регулятивные универсальные учебные действия
Самоорганизация:
составлять план, алгоритм решения задачи, выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.
Самоконтроль, эмоциональный интеллект:
владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов, владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;
предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, данных, найденных ошибок, выявленных трудностей;
оценивать соответствие результата цели и условиям, объяснять причины достижения или недостижения результатов деятельности, находить ошибку, давать оценку приобретённому опыту.
Совместная деятельность:
понимать и использовать преимущества командной и индивидуальной работы при решении учебных задач, принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы, обобщать мнения нескольких людей;
участвовать в групповых формах работы (обсуждения, обмен мнений, «мозговые штурмы» и иные), выполнять свою часть работы и координировать свои действия с другими членами команды, оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.
ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
К концу обучения в 10 классе обучающийся получит следующие предметные результаты по отдельным темам рабочей программы учебного курса «Алгебра и начала математического анализа»:
Числа и вычисления:
свободно оперировать понятиями: рациональное число, бесконечная периодическая дробь, проценты, иррациональное число, множества рациональных и действительных чисел, модуль действительного числа;
применять дроби и проценты для решения прикладных задач из различных отраслей знаний и реальной жизни;
применять приближённые вычисления, правила округления, прикидку и оценку результата вычислений;
свободно оперировать понятием: степень с целым показателем, использовать подходящую форму записи действительных чисел для решения практических задач и представления данных;
свободно оперировать понятием: арифметический корень натуральной степени;
свободно оперировать понятием: степень с рациональным показателем;
свободно оперировать понятиями: логарифм числа, десятичные и натуральные логарифмы;
свободно оперировать понятиями: синус, косинус, тангенс, котангенс числового аргумента;
оперировать понятиями: арксинус, арккосинус и арктангенс числового аргумента.
Уравнения и неравенства:
свободно оперировать понятиями: тождество, уравнение, неравенство, равносильные уравнения и уравнения-следствия, равносильные неравенства;
применять различные методы решения рациональных и дробно-рациональных уравнений, применять метод интервалов для решения неравенств;
свободно оперировать понятиями: многочлен от одной переменной, многочлен с целыми коэффициентами, корни многочлена, применять деление многочлена на многочлен с остатком, теорему Безу и теорему Виета для решения задач;
свободно оперировать понятиями: система линейных уравнений, матрица, определитель матрицы 2 × 2 и его геометрический смысл, использовать свойства определителя 2 × 2 для вычисления его значения, применять определители для решения системы линейных уравнений, моделировать реальные ситуации с помощью системы линейных уравнений, исследовать построенные модели с помощью матриц и определителей, интерпретировать полученный результат;
использовать свойства действий с корнями для преобразования выражений;
выполнять преобразования числовых выражений, содержащих степени с рациональным показателем;
использовать свойства логарифмов для преобразования логарифмических выражений;
свободно оперировать понятиями: иррациональные, показательные и логарифмические уравнения, находить их решения с помощью равносильных переходов или осуществляя проверку корней;
применять основные тригонометрические формулы для преобразования тригонометрических выражений;
свободно оперировать понятием: тригонометрическое уравнение, применять необходимые формулы для решения основных типов тригонометрических уравнений;
моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства по условию задачи, исследовать построенные модели с использованием аппарата алгебры.
Функции и графики:
свободно оперировать понятиями: функция, способы задания функции, взаимно обратные функции, композиция функций, график функции, выполнять элементарные преобразования графиков функций;
свободно оперировать понятиями: область определения и множество значений функции, нули функции, промежутки знакопостоянства;
свободно оперировать понятиями: чётные и нечётные функции, периодические функции, промежутки монотонности функции, максимумы и минимумы функции, наибольшее и наименьшее значение функции на промежутке;
свободно оперировать понятиями: степенная функция с натуральным и целым показателем, график степенной функции с натуральным и целым показателем, график корня n-ой степени как функции обратной степени с натуральным показателем;
оперировать понятиями: линейная, квадратичная и дробно-линейная функции, выполнять элементарное исследование и построение их графиков;
свободно оперировать понятиями: показательная и логарифмическая функции, их свойства и графики, использовать их графики для решения уравнений;
свободно оперировать понятиями: тригонометрическая окружность, определение тригонометрических функций числового аргумента;
использовать графики функций для исследования процессов и зависимостей при решении задач из других учебных предметов и реальной жизни, выражать формулами зависимости между величинами;
Начала математического анализа:
свободно оперировать понятиями: арифметическая и геометрическая прогрессия, бесконечно убывающая геометрическая прогрессия, линейный и экспоненциальный рост, формула сложных процентов, иметь представление о константе;
использовать прогрессии для решения реальных задач прикладного характера;
свободно оперировать понятиями: последовательность, способы задания последовательностей, монотонные и ограниченные последовательности, понимать основы зарождения математического анализа как анализа бесконечно малых;
свободно оперировать понятиями: непрерывные функции, точки разрыва графика функции, асимптоты графика функции;
свободно оперировать понятием: функция, непрерывная на отрезке, применять свойства непрерывных функций для решения задач;
свободно оперировать понятиями: первая и вторая производные функции, касательная к графику функции;
вычислять производные суммы, произведения, частного и композиции двух функций, знать производные элементарных функций;
использовать геометрический и физический смысл производной для решения задач.
Множества и логика:
свободно оперировать понятиями: множество, операции над множествами;
использовать теоретико-множественный аппарат для описания реальных процессов и явлений, при решении задач из других учебных предметов;
свободно оперировать понятиями: определение, теорема, уравнение-следствие, свойство математического объекта, доказательство, равносильные уравнения и неравенства.
Для оценки достижения планируемых результатов используются контрольные работы из следующих пособий:
- Алгебра и начала математического анализа. Методические рекомендации. 10-11 классы: учеб. Пособие для общеобразоват. Организаций/ Н.Е. Фёдорова, М.В. Ткачева. Электронная книга, PDF
- Алгебра и начала математического анализа. 10 класс. Дидактические материалы. Базовый и углубленный уровни / Шабунин М.И. и др., Электронная книга, PDF
- Алгебра. 10 класс. Самостоятельные и контрольные работы (углубленный). Мерзляк А.Г., Полонский В.Б., Рабинович Е.М. Электронная книга, PDF
- Алгебра и начала математического анализа. 10 класс. Углубленный уровень. Методическое пособие (Е.В. Буцко, А.Г. Мерзляк, В.Б. Полонский, М.С. Якир). Электронная книга, PDF
СОДЕРЖАНИЕ УЧЕБНОГО КУРСА
Числа и вычисления
Рациональные числа. Обыкновенные и десятичные дроби, проценты, бесконечные периодические дроби. Применение дробей и процентов для решения прикладных задач из различных отраслей знаний и реальной жизни.
Действительные числа. Рациональные и иррациональные числа. Арифметические операции с действительными числами. Модуль действительного числа и его свойства. Приближённые вычисления, правила округления, прикидка и оценка результата вычислений.
Степень с целым показателем. Бином Ньютона. Использование подходящей формы записи действительных чисел для решения практических задач и представления данных.
Арифметический корень натуральной степени и его свойства.
Степень с рациональным показателем и её свойства, степень с действительным показателем.
Логарифм числа. Свойства логарифма. Десятичные и натуральные логарифмы.
Синус, косинус, тангенс, котангенс числового аргумента. Арксинус, арккосинус и арктангенс числового аргумента.
Уравнения и неравенства
Тождества и тождественные преобразования. Уравнение, корень уравнения. Равносильные уравнения и уравнения-следствия. Неравенство, решение неравенства.
Основные методы решения целых и дробно-рациональных уравнений и неравенств. Многочлены от одной переменной. Деление многочлена на многочлен с остатком. Теорема Безу. Многочлены с целыми коэффициентами. Теорема Виета.
Преобразования числовых выражений, содержащих степени и корни.
Иррациональные уравнения. Основные методы решения иррациональных уравнений.
Показательные уравнения. Основные методы решения показательных уравнений.
Преобразование выражений, содержащих логарифмы.
Логарифмические уравнения. Основные методы решения логарифмических уравнений.
Основные тригонометрические формулы. Преобразование тригонометрических выражений. Решение тригонометрических уравнений.
Решение систем линейных уравнений. Матрица системы линейных уравнений. Определитель матрицы 2×2, его геометрический смысл и свойства, вычисление его значения, применение определителя для решения системы линейных уравнений. Решение прикладных задач с помощью системы линейных уравнений. Исследование построенной модели с помощью матриц и определителей.
Построение математических моделей реальной ситуации с помощью уравнений и неравенств. Применение уравнений и неравенств к решению математических задач и задач из различных областей науки и реальной жизни.
Функции и графики
Функция, способы задания функции. Взаимно обратные функции. Композиция функций. График функции. Элементарные преобразования графиков функций.
Область определения и множество значений функции. Нули функции. Промежутки знакопостоянства. Чётные и нечётные функции. Периодические функции. Промежутки монотонности функции. Максимумы и минимумы функции. Наибольшее и наименьшее значения функции на промежутке.
Линейная, квадратичная и дробно-линейная функции. Элементарное исследование и построение их графиков.
Степенная функция с натуральным и целым показателем. Её свойства и график. Свойства и график корня n-ой степени как функции обратной степени с натуральным показателем.
Показательная и логарифмическая функции, их свойства и графики. Использование графиков функций для решения уравнений.
Тригонометрическая окружность, определение тригонометрических функций числового аргумента.
Функциональные зависимости в реальных процессах и явлениях. Графики реальных зависимостей.
Начала математического анализа
Последовательности, способы задания последовательностей. Метод математической индукции. Монотонные и ограниченные последовательности. История возникновения математического анализа как анализа бесконечно малых.
Арифметическая и геометрическая прогрессии. Бесконечно убывающая геометрическая прогрессия. Сумма бесконечно убывающей геометрической прогрессии. Линейный и экспоненциальный рост. Число е. Формула сложных процентов. Использование прогрессии для решения реальных задач прикладного характера.
Непрерывные функции и их свойства. Точки разрыва. Асимптоты графиков функций. Свойства функций непрерывных на отрезке. Метод интервалов для решения неравенств. Применение свойств непрерывных функций для решения задач.
Первая и вторая производные функции. Определение, геометрический и физический смысл производной. Уравнение касательной к графику функции.
Производные элементарных функций. Производная суммы, произведения, частного и композиции функций.
Множества и логика
Множество, операции над множествами и их свойства. Диаграммы Эйлера–Венна. Применение теоретико-множественного аппарата для описания реальных процессов и явлений, при решении задач из других учебных предметов.
Определение, теорема, свойство математического объекта, следствие, доказательство, равносильные уравнения.
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ, В ТОМ ЧИСЛЕ С УЧЕТОМ РАБОЧЕЙ ПРОГРАММЫ ВОСПИТАНИЯ С УКАЗАНИЕМ КОЛИЧЕСТВА ЧАСОВ, ОТВОДИМЫХ НА ОСВОЕНИЕ КАЖДОЙ ТЕМЫ
№ п/п | Тема урока с учетом рабочей программы воспитания | Количество часов, отводимых на освоение темы/ раздела | Характеристика основных видов учебной деятельности | Дата | ||
Всего | Конт- рольные работы | план | факт | |||
Множество действительных чисел. Многочлены. Рациональные уравнения и неравенства. Системы линейных уравнений | 24 | 2 | ||||
1 | Множество, операции над множествами и их свойства | 1 | Использовать теоретико-множественный аппарат для описания хода решения математических задач, а также реальных процессов и явлений. Оперировать понятиями: рациональное число, бесконечная периодическая дробь, проценты; иррациональное и действительное число; модуль действительного числа; использовать эти понятия при проведении рассуждений и доказательств, применять дроби и проценты для решения прикладных задач из различных отраслей знаний и реальной жизни. Использовать приближённые вычисления, правила округления, прикидку и оценку результата вычислений. Применять различные методы решения рациональных и дробно-рациональных уравнений; а также метод интервалов для решения неравенств. Оперировать понятиями многочлен от одной переменной, его корни; применять деление многочлена на многочлен с остатком, теорему Безу и теорему Виета для решения задач. Оперировать понятиями: система линейных уравнений, матрица, определитель матрицы. Использовать свойства определителя 2 × 2 для вычисления его значения, применять определители для решения системы линейных уравнений. Моделировать реальные ситуации с помощью системы линейных уравнений, исследовать построенные модели с помощью матриц и определителей, интерпретировать полученный результат | |||
2 | Диаграммы Эйлера-Венна | 1 | ||||
3 | Применение теоретико-множественного аппарата для решения задач | 1 | ||||
4 | Рациональные числа. Обыкновенные и десятичные дроби, проценты, бесконечные периодические дроби | 1 | ||||
5 | Решение заданий по теме: «Рациональные числа. Обыкновенные и десятичные дроби, проценты, бесконечные периодические дроби» | 1 | ||||
6 | Применение дробей и процентов для решения прикладных задач | 1 | ||||
7 | Применение дробей и процентов для решения прикладных задач | 1 | ||||
8 | Действительные числа. Рациональные и иррациональные числа | 1 | ||||
9 | Арифметические операции с действительными числами | 1 | ||||
10 | Модуль действительного числа и его свойства | 1 | ||||
11 | Приближённые вычисления, правила округления, прикидка и оценка результата вычислений | 1 | ||||
12 | Основные методы решения целых и дробно-рациональных уравнений и неравенств | 1 | ||||
13 | Основные методы решения целых и дробно-рациональных уравнений и неравенств | 1 | ||||
14 | Стартовая диагностическая работа | 1 | 1 | |||
15 | Многочлены от одной переменной. Деление многочлена на многочлен с остатком. Теорема Безу | 1 | ||||
16 | Многочлены с целыми коэффициентами. Теорема Виета | 1 | ||||
17 | Решение систем линейных уравнений | 1 | ||||
18 | Решение систем линейных уравнений ВП. День защиты животных | 1 | ||||
19 | Матрица системы линейных уравнений. Определитель матрицы 2×2, его геометрический смысл и свойства; вычисление его значения | 1 | ||||
20 | Определитель матрицы 2×2, его геометрический смысл и свойства; вычисление его значения | 1 | ||||
21 | Применение определителя для решения системы линейных уравнений | 1 | ||||
22 | Решение прикладных задач с помощью системы линейных уравнений | 1 | ||||
23 | Решение прикладных задач с помощью системы линейных уравнений | 1 | ||||
24 | Контрольная работа: "Рациональные уравнения и неравенства. Системы линейных уравнений" | 1 | 1 | |||
Функции и графики. Степенная функция с целым показателем | 12 | 1 | ||||
25 | Функция, способы задания функции. Взаимно обратные функции. Композиция функций | 1 | Оперировать понятиями: функция, способы задания функции; взаимно обратные функции, композиция функций, график функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства; линейная, квадратичная, дробно-линейная и степенная функции. Выполнять элементарные преобразования графиков функций. Знать и уметь доказывать чётность или нечётность функции, периодичность функции, находить промежутки монотонности функции, максимумы и минимумы функции, наибольшее и наименьшее значение функции на промежутке. Формулировать и иллюстрировать графически свойства линейной, квадратичной, дробно-линейной и степенной функций. Выражать формулами зависимости между величинами. Знать определение и свойства степени с целым показателем; подходящую форму записи действительных чисел для решения практических задач и представления данных | |||
26 | График функции. Элементарные преобразования графиков функций | 1 | ||||
27 | Область определения и множество значений функции. Нули функции. Промежутки знак постоянства | 1 | ||||
28 | Чётные и нечётные функции. Периодические функции. Промежутки монотонности функции | 1 | ||||
29 | Максимумы и минимумы функции. Наибольшее и наименьшее значение функции на промежутке | 1 | ||||
30 | Линейная, квадратичная и дробно-линейная функции | 1 | ||||
31 | Элементарное исследование и построение графиков этих функций | 1 | ||||
32 | Элементарное исследование и построение графиков этих функций | 1 | ||||
33 | Степень с целым показателем. Бином Ньютона | 1 | ||||
34 | Решение заданий по теме: «Степень с целым показателем. Бином Ньютона» | 1 | ||||
35 | Степенная функция с натуральным и целым показателем. Её свойства и график | 1 | ||||
36 | Контрольная работа: "Степенная функция. Её свойства и график" | 1 | 1 | |||
Арифметический корень n-ой степени. Иррациональные уравнения | 15 | 1 | ||||
37 | Арифметический корень натуральной степени и его свойства | 1 | Формулировать, записывать в символической форме и использовать свойства корня n-ой степени для преобразования выражений. Находить решения иррациональных уравнений с помощью равносильных переходов или осуществляя проверку корней. Строить график функции корня n-ой степени как обратной для функции степени с натуральным показателем | |||
38 | Решение заданий по теме: «Арифметический корень натуральной степени и его свойства» | 1 | ||||
39 | Преобразования числовых выражений, содержащих степени и корни | 1 | ||||
40 | Решение заданий по теме: «Преобразования числовых выражений, содержащих степени и корни» ВП. Неделя математической и финансовой грамотности | 1 | ||||
41 | Решение заданий по теме: «Преобразования числовых выражений, содержащих степени и корни» | 1 | ||||
42 | Иррациональные уравнения. Основные методы решения иррациональных уравнений | 1 | ||||
43 | Решение иррациональных уравнений ВП. Неделя математической и финансовой грамотности | 1 | ||||
44 | Решение иррациональных уравнений | 1 | ||||
45 | Равносильные переходы в решении иррациональных уравнений | 1 | ||||
46 | Применение равносильных переходов при решении иррациональных уравнений | 1 | ||||
47 | Применение равносильных переходов при решении иррациональных уравнений | 1 | ||||
48 | Применение равносильных переходов при решении иррациональных уравнений | 1 | ||||
49 | Свойства и график корня n-ой степени как функции обратной степени с натуральным показателем | 1 | ||||
50 | Свойства и график корня n-ой степени как функции обратной степени с натуральным показателем | 1 | ||||
51 | Контрольная работа: "Свойства и график корня n-ой степени. Иррациональные уравнения" | 1 | 1 | |||
Показательная функция. Показательные уравнения | 10 | 2 | ||||
52 | Степень с рациональным показателем и её свойства | 1 | Формулировать определение степени с рациональным показателем. Выполнять преобразования числовых выражений, содержащих степени с рациональным показателем. Использовать цифровые ресурсы для построения графика показательной функции и изучения её свойств. Находить решения показательных уравнений | |||
53 | Решение заданий по теме: «Степень с рациональным показателем и её свойства» | 1 | ||||
54 | Решение заданий по теме: «Степень с рациональным показателем и её свойства» | 1 | ||||
55 | Показательная функция, её свойства и график | 1 | ||||
56 | Использование графика функции для решения уравнений | 1 | ||||
57 | Административная контрольная работа | 1 | ||||
58 | Показательные уравнения. Основные методы решения показательных уравнений | 1 | ||||
59 | Решение показательных уравнений | 1 | ||||
60 | Решение показательных уравнений | 1 | ||||
61 | Контрольная работа: "Показательная функция. Показательные уравнения" | 1 | 1 | |||
Логарифмическая функция. Логарифмические уравнения | 18 | 1 | ||||
62 | Логарифм числа. Свойства логарифма | 1 | Давать определение логарифма числа; десятичного и натурального логарифма. Использовать свойства логарифмов для преобразования логарифмических выражений. Строить график логарифмической функции как обратной к показательной и использовать свойства логарифмической функции для решения задач. Находить решения логарифмических уравнений с помощью равносильных переходов или осуществляя проверку корней | |||
63 | Решение заданий по теме: «Логарифм числа. Свойства логарифма» | 1 | ||||
64 | Решение заданий по теме: «Логарифм числа. Свойства логарифма» | 1 | ||||
65 | Десятичные и натуральные логарифмы | 1 | ||||
66 | Решение заданий по теме: «Десятичные и натуральные логарифмы» | 1 | ||||
67 | Преобразование выражений, содержащих логарифмы | 1 | ||||
68 | Решение заданий по теме: «Преобразование выражений, содержащих логарифмы» | 1 | ||||
69 | Решение заданий по теме: «Преобразование выражений, содержащих логарифмы» | 1 | ||||
70 | Логарифмическая функция, её свойства и график | 1 | ||||
71 | Решение заданий по теме: «Логарифмическая функция, её свойства и график» | 1 | ||||
72 | Использование графика функции для решения уравнений | 1 | ||||
73 | Использование графика функции для решения уравнений | 1 | ||||
74 | Логарифмические уравнения. Основные методы решения логарифмических уравнений | 1 | ||||
75 | Решение логарифмических уравнений | 1 | ||||
76 | Решение логарифмических уравнений | 1 | ||||
77 | Равносильные переходы в решении логарифмических уравнений | 1 | ||||
78 | Равносильные переходы в решении логарифмических уравнений | 1 | ||||
79 | Контрольная работа: "Логарифмическая функция. Логарифмические уравнения" | 1 | 1 | |||
Тригонометрические выражения и уравнения | 22 | 1 | ||||
80 | Синус, косинус, тангенс и котангенс числового аргумента | 1 | Давать определения синуса, косинуса, тангенса и котангенса числового аргумента; а также арксинуса, арккосинуса и арктангенса числа. Применять основные тригонометрические формулы для преобразования тригонометрических выражений. Применять формулы тригонометрии для решения основных типов тригонометрических уравнений | |||
81 | Решение заданий по теме: «Синус, косинус, тангенс и котангенс числового аргумента» | 1 | ||||
82 | Арксинус, арккосинус и арктангенс числового аргумента | 1 | ||||
83 | Решение заданий по теме: «Арксинус, арккосинус и арктангенс числового аргумента» ВП. День Российской науки | 1 | ||||
84 | Тригонометрическая окружность, определение тригонометрических функций числового аргумента | 1 | ||||
85 | Решение заданий по теме: « Тригонометрическая окружность, определение тригонометрических функций числового аргумента» | 1 | ||||
86 | Основные тригонометрические формулы | 1 | ||||
87 | Решение заданий по теме: « Основные тригонометрические формулы» | 1 | ||||
88 | Решение заданий по теме: « Основные тригонометрические формулы» | 1 | ||||
89 | Решение заданий по теме: « Основные тригонометрические формулы» | 1 | ||||
90 | Преобразование тригонометрических выражений | 1 | ||||
91 | Решение заданий по теме: «Преобразование тригонометрических выражений» | 1 | ||||
92 | Решение заданий по теме: «Преобразование тригонометрических выражений» | 1 | ||||
93 | Решение заданий по теме: «Преобразование тригонометрических выражений» | 1 | ||||
94 | Решение простейших тригонометрических уравнений | 1 | ||||
95 | Решение простейших тригонометрических уравнений | 1 | ||||
96 | Решение тригонометрических уравнений, сводящихся к алгебраическим | 1 | ||||
97 | Решение однородных и неоднородных тригонометрических уравнений | 1 | ||||
98 | Решение тригонометрических уравнений методом замены неизвестного и разложения на множители | 1 | ||||
99 | Решение тригонометрических уравнений | 1 | ||||
100 | Решение тригонометрических уравнений | 1 | ||||
101 | Контрольная работа: "Тригонометрические выражения и тригонометрические уравнения" | 1 | 1 | |||
Последовательности и прогрессии | 10 | 1 | ||||
102 | Последовательности, способы задания последовательностей. Метод математической индукции | 1 | Оперировать понятиями: последовательность, способы задания последовательностей; монотонные и ограниченные последовательности; исследовать последовательности на монотонность и ограниченность. Получать представление об основных идеях анализа бесконечно малых. Давать определение арифметической и геометрической прогрессии. Доказывать свойства арифметической и геометрической прогрессии, находить сумму членов прогрессии, а также сумму членов бесконечно убывающей геометрической прогрессии. Использовать прогрессии для решения задач прикладного характер. Применять формулу сложных процентов для решения задач из реальной практики | |||
103 | Монотонные и ограниченные последовательности. История анализа бесконечно малых ВП. Международный день математики. Международный день числа «пи» | 1 | ||||
104 | Арифметическая прогрессия | 1 | ||||
105 | Геометрическая прогрессия | 1 | ||||
106 | Бесконечно убывающая геометрическая прогрессия | 1 | ||||
107 | Сумма бесконечно убывающей геометрической прогрессии | 1 | ||||
108 | Линейный и экспоненциальный рост. Число е. Формула сложных процентов | 1 | ||||
109 | Линейный и экспоненциальный рост. Число е. Формула сложных процентов | 1 | ||||
110 | Использование прогрессии для решения реальных задач прикладного характера | 1 | ||||
111 | Контрольная работа: "Последовательности и прогрессии" | 1 | 1 | |||
Непрерывные функции. Производная | 20 | 1 | ||||
112 | Непрерывные функции и их свойства | 1 | Оперировать понятиями: функция непрерывная на отрезке, точка разрыва функции, асимптота графика функции. Применять свойства непрерывных функций для решения задач. Оперировать понятиями: первая и вторая производные функции; понимать физический и геометрический смысл производной; записывать уравнение касательной. Вычислять производные суммы, произведения, частного и сложной функции. Изучать производные элементарных функций. Использовать геометрический и физический смысл производной для решения задач | |||
113 | Точка разрыва. Асимптоты графиков функций | 1 | ||||
114 | Свойства функций непрерывных на отрезке | 1 | ||||
115 | Свойства функций непрерывных на отрезке ВП. День космонавтики | 1 | ||||
116 | Метод интервалов для решения неравенств | 1 | ||||
117 | Решение заданий по теме: «Метод интервалов для решения неравенств» | 1 | ||||
118 | Решение заданий по теме: «Метод интервалов для решения неравенств» | 1 | ||||
119 | Применение свойств непрерывных функций для решения задач | 1 | ||||
120 | Применение свойств непрерывных функций для решения задач | 1 | ||||
121 | Первая и вторая производные функции | 1 | ||||
122 | Определение, геометрический смысл производной | 1 | ||||
123 | Определение, физический смысл производной | 1 | ||||
124 | Уравнение касательной к графику функции | 1 | ||||
125 | Уравнение касательной к графику функции | 1 | ||||
126 | Производные элементарных функций | 1 | ||||
127 | Решение заданий по теме: «Производные элементарных функций» | 1 | ||||
128 | Производная суммы, произведения, частного и композиции функций | 1 | ||||
129 | Контрольная работа по теме: "Производная" | 1 | 1 | |||
130 | Решение заданий по теме: «Производная суммы, произведения, частного и композиции функций» | 1 | ||||
131 | Решение заданий по теме: «Производная суммы, произведения, частного и композиции функций» | 1 | ||||
Повторение, обобщение, систематизация знаний | 5 | 2 | ||||
132-133 | Контрольная работа на промежуточной аттестации | 2 | 2 | |||
134 | Повторение, обобщение, систематизация знаний: "Уравнения" | 1 | Применять основные понятия курса алгебры и начал математического анализа для решения задач из реальной жизни и других школьных предметов | |||
135 | Повторение, обобщение, систематизация знаний: "Функции" | |||||
136 | Решение заданий за курс 10 класса | |||||
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ | 136 | 12 |
По теме: методические разработки, презентации и конспекты
Рабочая программа по предмету "Алгебра и начала математического анализа" профильный уровень 11 класс
Рабочая программа по предмету " Алгебра и начала математического анализа" для 11 класса на профильном уровне составлена к учебнику С.М. Никольского расчитанная на 136 часов (4 часа в...
Рабочая программа по предмету "Алгебра и начала математического анализа" профильный уровень 11 класс
Рабочая программа по предмету " Алгебра и начала математического анализа" для 11 класса на профильном уровне составлена к учебнику С.М. Никольского расчитанная на 136 часов (4 часа в неделю)...
Рабочая программа:«Алгебра и начала математического анализа для 11 класса»; Базовый и углубленный уровень. Колягин Ю.М.
Рабочая программа по алгебре и началам анализа для 1 класса разработана на основе Федерального Закона "ОБ образовании В Росийской Федерации " № 273 -ФЗ от 29.12.2012г.; Федерального компонен...
РАБОЧАЯ ПРОГРАММА учебного предмета «Алгебра и начала математического анализа. Углубленный уровень» для обучающихся 10 – 11 классов
На изучение учебного курса «Алгебра и начала математического анализа» отводится 272 часа:в 10 классе – 136 часов (4 часа в неделю),в 11 классе – 136 часов (4 часа в неделю)....
РАБОЧАЯ ПРОГРАММА «Алгебра и начала математического анализа» 10-11 класс (углубленный уровень) срок реализации 2 года
РАБОЧАЯ ПРОГРАММА«Алгебра и начала математического анализа» 10-11 класс (углубленный уровень)срок реализации 2 года...
Рабочая программа учебного предмета "Алгебра и начала математического анализа. Углубленный уровень." для обучающихся 10-11 классов.
Рабочая программа учебного предмета "Алгебра и начала математического анализа. Углубленный уровень." для обучающихся 10-11 классов....
2024-2025 .РАБОЧАЯ ПРОГРАММА (ID 5051960) учебного предмета «Алгебра и начала математического анализа. Углубленный уровень» для обучающихся 10 – 11 классов
Учебный курс «Алгебра и начала математического анализа» является одним из наиболее значимых в программе среднего общего образования, поскольку, с одной стороны, он обеспечивает инструмента...