Рабочая программа по алгебре для слабослышащих детей (9 класс)
рабочая программа по алгебре (9 класс)
Рабочая программа по алгебре для слабослышащих детей
Скачать:
Вложение | Размер |
---|---|
rabochaya_programma_9_klass_slaboslichahie_algebra.docx | 36.96 КБ |
Предварительный просмотр:
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Рабочая программа адресована для слабослышащих детей, обучающихся 9 класса по ФГОС ООО.
Рабочая программа составлена на основе:
- Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 года № 1897;
- Федерального перечня учебников, рекомендованных (допущенных) Министерством образования к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования, утвержденного приказомМинистерства образования и науки Российской Федерации от 31.03.2014 г.№ 253;
- Федерального базисного учебного плана и примерных учебных планов для общеобразовательных учреждений РФ, реализующих программу общего образования, 2004 г.;
- авторской программы А.Г. Мерзляка, В.Б. Полонского, М.С. Якира по алгебре для 7-9 классов общеобразовательных учреждений, входящей в единый реестр примерных основных образовательных программ.
В ней так же учитываются доминирующие идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции — умения учиться.
Цели обучения:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования; формирование представлений о методах математики как универсального языка науки и техники, средства моделирования явлений и процессов; развитие интуиции, интеллекта, логического мышления, ясности и точности мысли, элементов алгоритмической культуры, способности к преодолению трудностей; воспитание культуры личности, отношения к математике как части общечеловеческой культуры, играющей особую роль в общественном развитии.
Задачи обучения:
• овладение конкретными математическими знаниями, необходимыми для применения в практической деятельности, для изучения смежных дисциплин, для продолжения профессионального образования; интеллектуальное развитие учащихся,
• формирование качеств мышления, характерных для математической деятельности и необходимых для продуктивной жизни в обществе;
• формирование представлений об идеях и методах математики, о математике как форме описания и методе познания действительности;
• формирование представлений о математике как части общечеловеческой культуры, понимание значимости математики для общественного прогресса.
Коррекционная задача процесса обучения:
∙ поддержка фундаментальных способностей слабослышащих детей;
∙ формирование осознанного и прочного усвоения приемов устных и письменных вычислений;
∙ формирование элементарных логических умений (обобщения и конкретизация, простейшие умозаключения, логические выводы, обоснования);
∙ формирование математической терминологии в рамках каждого тематического раздела курса;
∙ развитие словесной и письменной речи, как в аспекте понимания, так и в аспекте самостоятельного использования в связи с освоением математического материала.
Цель изучения курса математики может быть достигнута при освоении и реализации современных технологий обучения:
• технология развивающего обучения;
• технология личностно ориентированного обучения;
• технология на основе эффективности управления и организации учебного процесса: разноуровневое обучение; групповые технологии; информационно-коммуникативные технологии (с включением компьютерных средств обучения). Специфические особенности данного курса математики обусловлены тем, что он преподается детям с недостатками слуха. У слабослышащих и позднооглохших обучающихся есть серьезные отличия от слышащих: нарушения интеллекта, плохое понимание ими речи окружающих людей, в том числе учителя, невозможность выразить свои мысли из-за ограниченности словарного запаса, неверное понимание значения слова, что создает две основные проблемы: чему учить и как учить. Каждая задача, даже самая простая, требует больших знаний специальных формулировок, определений, элементов, фигур и т.д. Был проведен психологически и методически обоснованный отбор материала, его распределение в определенной последовательности (содержание обучения) и определены методы и приемы обучения, базирующихся на особенностях развития учащихся и преподносимого языкового материала. Затрудненность усвоения слабослышащими новых понятий, особенно абстрактных и обобщенных, медленное образование связей изучаемого материала с уже известным, быстрое забывание, большие трудности при работе с учебником, непонимание прочитанного, предусматривает увеличение времени для изучения курса математики. Психофизиологические особенности слабослышащих и позднооглохших детей определяют и особенности методики преподавания математики: - доступность программного материала по объему и содержанию; - широкое использование средств наглядности различной степени абстрактности, рассчитанное на привлечение непроизвольного и развития произвольного внимания, которое отстает на 3 – 4 года от развития внимания слышащих; -систематическое повторение пройденного материала, что требует дополнительного времени; - особое внимание уделяется внутрипредметным и межпредметным связям; - адаптация дидактических материалов (вопросов, задач, текстовых заданий, таблиц) к особенностям усвоения знаний обучающимися с недостатками слуха.
Общая характеристика курса алгебры в 9 классе
Содержание курса алгебры в 9 классе представлено в виде следующих содержательных разделов: «Алгебра» и «Функции».
Содержание раздела «Алгебра» формирует знания о математическом языке, необходимые для решения математических задач, задач из смежных дисциплин, а также практических задач. Изучение материала способствует формированию у учащихся математического аппарата решения уравнений и их систем, текстовых задач с помощью уравнений и систем уравнений.
Материал данного раздела представлен в аспекте, способствующем формированию у учащихся умения пользоваться алгоритмами. Существенная роль при этом отводится развитию алгоритмического мышления — важной составляющей интеллектуального развития человека.
Содержание раздела «Числовые множества» нацелено на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи. Материал раздела развивает понятие о числе, которое связано с изучением действительных чисел.
Цель содержания раздела «Функции» — получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования процессов и явлений окружающего мира. Соответствующий материал способствует развитию воображения и творческих способностей учащихся, умению использовать различные языки математики (словесный, символический, графический).
Организация учебного процесса
Технологии обучения | Формы обучения | Формы контроля | |||
‒ | технология коррекционно-развивающего | ‒ | индивидуальные | ‒ | устный опрос |
обучения | ‒ | парные | ‒ | письменный опрос | |
‒ технология адаптивной системы обучения | ‒ | групповые | ‒ | тестирование | |
‒ | технология дифференцированного и | ‒ | фронтальные | ‒ | математический диктант |
индивидуального обучения | ‒ | классные | ‒ | индивидуальные задания | |
‒ | информационно - коммуникационные | ‒ | внеклассные | ‒ | практическая работа |
технологии | ‒ | самостоятельная работа | |||
‒ | обучение в сотрудничестве | ‒ | контрольная работа | ||
‒ | здоровье сберегающие технологии | ‒ | исследовательские и проектные | ||
‒ | элементы проблемного обучения | работы | |||
‒ | элементы игровых технологий | ‒ | защита проекта | ||
‒ | исследовательские методы обучения | ||||
‒ | технологии интегрированного обучения |
Описание места учебного предмета в учебном плане
Базисный учебный (образовательный) план на изучение алгебры в 9 классе основной школы отводит 4 учебных часа в неделю в течение года обучения 34 недели, всего 136 часов.
Личностные, метапредметные и предметные результаты освоения курса алгебры
в 9 классе
Изучение алгебры по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного образовательного стандарта основного общего образования.
Личностные результаты:
- воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
- ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
- осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;
- умение контролировать процесс и результат учебной и математической деятельности;
- критичность мышления, инициатива, находчивость, активность при решении математических задач.
Метапредметные результаты:
- умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;
- умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
- умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- развитие компетентности в области использования ин- формационно-коммуникационных технологий;
- первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических задач, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;
- умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;
- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.
Предметные результаты:
- осознание значения математики для повседневной жизни человека;
- представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
- развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;
- владение базовым понятийным аппаратом по основным разделам содержания;
- систематические знания о функциях и их свойствах;
- практически значимые математические умения и навыки, их применение к решению математических и нематематических задач предполагающее умения:
- выполнять вычисления с действительными числами;
- решать уравнения, неравенства, системы уравнений и неравенств;
- решать текстовые задачи арифметическим способом, с помощью составления и решения уравнений, систем уравнений и неравенств;
- использовать алгебраический язык для описания предметов окружающего мира и создания соответствующих математических моделей;
- проверить практические расчёты: вычисления с процентами, вычисления с числовыми последовательностями, вычисления статистических характеристик, выполнение приближённых вычислений;
- выполнять тождественные преобразования рациональных выражений;
- выполнять операции над множествами;
- исследовать функции и строить их графики;
- читать и использовать информацию, представленную в виде таблицы, диаграммы (столбчатой или круговой);
- решать простейшие комбинаторные задачи.
СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА, КУРСА
Алгебраические выражения
Выражение с переменными. Значение выражения с переменными. Допустимые значения переменных. Тождества. Тождественные преобразования алгебраических выражений. Доказательство тождеств.
Степень с натуральным показателем и её свойства. Одночлены. Одночлен стандартного вида. Степень одночлена Многочлены. Многочлен стандартного вида. Степень многочлена. Сложение, вычитание и умножение многочленов Формулы сокращённого умножения: квадрат суммы и квадрат разности двух выражений, произведение разности суммы двух выражений. Разложение многочлена на множители. Вынесение общего множителя за скобки. Метод группировки. Разность квадратов двух выражений. Сумм и разность кубов двух выражений.
Уравнения
Уравнение с одной переменной. Корень уравнения. Равносильные уравнения. Свойства уравнений с одной переменной. Уравнение как математическая модель реальной ситуации.
Линейное уравнение. Рациональные уравнения. Решение рациональных уравнений, сводящихся к линейным. Решение текстовых задач с помощью рациональных уравнений.
Уравнение с двумя переменными. График уравнения с двумя переменными. Линейное уравнение с двумя переменными и его график.
Системы уравнений с двумя переменными. Графический метод решения системы уравнений с двумя переменными. Решение систем уравнений методом подстановки и сложения. Система двух уравнений с двумя переменными как модель реальной ситуации.
Функции
Числовые функции
Функциональные зависимости между величинами. Понятие функции. Функция как математическая модель реального процесса. Область определения и область значения функции. Способы задания функции. График функции.
Линейная функция, ее свойства и графики.
Учебно – тематический план
№ п/п | Название темы | Кол-во часов |
1 | Повторение | 4 часа |
2 | Линейное уравнение с одной переменной | 30 часов |
3 | Целые выражения | 64 часа |
4 | Функции | 20 часов |
5 | Системы линейных уравнений с двумя переменными | 16 часов |
6 | Повторение и систематизация учебного материала | 2 часа |
Всего | 136 часов |
Система оценки планируемых результатов
Для оценки планируемых результатов данной программой предусмотрено использование:
- вопросов и заданий для самостоятельной подготовки;
- тестовых задания для самоконтроля;
Виды контроля и результатов обучения
- Текущий контроль
- Тематический контроль
- Итоговый контроль
Методы и формы организации контроля
- Устный опрос.
- Письменный опрос:
- Математический диктант;
- Самостоятельная работа;
- Контрольная работа.
Особенности контроля и оценки по математике.
Текущий контроль осуществляется как в письменной, так и в устной форме при выполнении заданий в тетради.
Письменные работы можно проводить в виде тестовых или самостоятельных работ на бумаге. Время работы в зависимости от сложности работы 15-20 минут урока. При этом возможно введение оценки «за общее впечатление от письменной работы» (аккуратность, эстетика, чистота, и т.д.). Эта отметка дополнительная и в журнал выносится по желанию ребенка.
Итоговый контроль проводится в форме контрольных работ практического типа. В этих работах с начала отдельно оценивается выполнение каждого задания, а затем вводится итоговая отметка. При этом итоговая отметка является не средним баллом, а определяется с учетом тех видов заданий, которые для данной работы являются основными.
Оценка ответов учащихся
Оценка – это определение степени усвоения учащимися знаний, умений, навыков в соответствии с требованиями государственного образовательного стандарта.
1. Устный ответ оценивается отметкой «5», если учащийся:
– полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
– изложил материал грамотным языком в определенной логической последовательности, точно используя специальную терминологию и символику;
– правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
– показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
– продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;
– отвечал самостоятельно без наводящих вопросов учителя;
– возможны одна-две неточности при освещении второстепенных вопросов или в рисунках, чертежах и т.д., которые ученик легко исправил по замечанию учителя.
2. Ответ оценивается отметкой «4», если он удовлетворяет в основном требованиям на отметку «5», но при этом имеет один из недостатков:
– в изложении допущены небольшие пробелы, не исказившие содержание ответа;
– допущены один-два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
– допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в рисунках, чертежах и т.д., легко исправленных по замечанию учителя.
3. Отметка «3» ставится в следующих случаях:
– неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала;
– имелись затруднения или допущены ошибки в определении понятий, использовании специальной терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
– учащийся не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
– при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Оценка контрольных и самостоятельных письменных работ.
Оценка "5" ставится, если ученик:
- выполнил работу без ошибок и недочетов в требуемом на «отлично» объеме;
- допустил не более одного недочета в требуемом на «отлично» объеме;
Оценка "4" ставится, если ученик выполнил работу полностью, но допустил в ней:
- не более одной негрубой ошибки и одного недочета в требуемом на «отлично» объеме;
- или не более трех недочетов в требуемом на «отлично» объеме.
Оценка "3" ставится, если ученик правильно выполнил не менее половины работы или допустил:
- не более двух грубых ошибок в требуемом на «отлично» объеме;
- или не более одной грубой и одной негрубой ошибки и одного недочета;
- или не более двух-трех негрубых ошибок;
- или одной негрубой ошибки и трех недочетов;
- или при отсутствии ошибок, но при наличии четырех-пяти недочетов.
Критерии выставления оценок за проверочные тесты.
1. Критерии выставления оценок за тест
- Время выполнения работы: на усмотрение учителя.
- Оценка «5» - 100 – 90% правильных ответов, «4» - 70-90%, «3» - 50-70%, «2» - менее 50% правильных ответов.
ТРЕБОВАНИЯ К ПОДГОТОВКЕ ОБУЧАЮЩИХСЯ ПО ПРЕДМЕТУ, КУРСУ
Алгебраические выражения
Учащийся научится:
- оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные, работать с формулами;
- выполнять преобразование выражений, содержащих степени с натуральными показателями;
- выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами;
- выполнять разложение многочленов на множители.
Учащийся получит возможность:
- выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
- применять тождественные преобразования для решения задач из различных разделов курса.
Уравнения
Учащийся научится:
- решать линейные уравнения с одной переменной, системы двух уравнений с двумя переменными;
- понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
- применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.
Учащийся получит возможность:
- овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
- применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.
Функции
Учащийся научится:
• понимать и использовать функциональные понятия, язык (термины, символические обозначения);
- строить графики линейной функций, исследовать свойства числовых функций на основе изучения поведения их графиков;
- понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами;
Учащийся получит возможность:
- проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; н основе графиков изученных функций строить боле сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);
- использовать функциональные представления и свойства функций для решения математических задач из различных.
ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА
Для учителя:
- Алгебра: 7 класс: учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2018.
- Алгебра: 7 класс: дидактические материалы: пособие для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, Е.М. Рабинович, М.С. Якир. — М.: Вентана-Граф, 2018.
- Алгебра: 7 класс: методическое пособие / Е.В. Буцко, А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.:Вентана-Граф, 2019.
Печатные пособия
- Таблицы по алгебре для 7-9 классов.
- Портреты выдающихся деятелей в области математики.
Информационные средства
- Коллекция медиаресурсов, электронные базы данных.
- Интернет.
Экранно-звуковые пособия
Видеофильмы об истории развития математики, математических идей и методов.
- Компьютер.
- Мультимедиапроектор.
Для ученика:
- Алгебра: 7 класс: учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2019.
- Индивидуальные слуховые аппараты.
По теме: методические разработки, презентации и конспекты
Рабочая программа по алгебре и началам анализа 10 класс. Мордкович А.Г. (3 часа).
Рабочая программа по алгебре с началами анализа при изучении математики в старших классах. Базовый уровень, Мордкович А.Г. (3часа). Пояснительная записка. Календарно-тематический план. Литература....
рабочая программа по алгебре и началам анализа 11 класса
Рабочая программа по алгебре для учащихся 11 классов по учебнику Мордковича А.Г....
Рабочая программа по алгебре и началам анализа, 11 класс, профильный уровень по программе А.Г.Мордковича
приведена рабочая программа, с пояснительной запиской, рассмотрены требвания к уровню подготовки выпускников...
Рабочая программа по алгебре и началам анализа . 11 класс, учебник "Алгебра и начала анализа" Колмогоров А.Н. и др.
Рабочая программа по алгебре и началам анализа . 11 класс, учебник А.Н.Колмогоров и др....
Рабочая программа по технологии для слабослышащих детей
Рабочая программа разработана для детей с нарушением слуха для 5 класса...
Рабочая программа по технологии для слабослышащих детей 6 класс
Рабочая программа по технологии разработана для детей с нарушением слуха...
Рабочая программа по алгебре и началам анализа. 10 класс.( 4 часа в неделю) Учебник "Алгебра и начала анализа, 10 класс" Мордкович А.Г и др. в двух частях, базовый и углубленный уровни.
Рабочая программа составлена в соответствии с требованиями ФГОС....