Решение задач на дифференцированные платежи при подготовке к ЕГЭ по математике
материал для подготовки к егэ (гиа) по алгебре (11 класс)
В настоящее время очень много изданий и сайтов показывают решение задачи №17, профильного ЕГЭ по математике. Задача №17 - это текстовая задача на банковские проценты и оптимизацию.Целый ряд задач предлагается на дифференцированные платежи. Решение задач такого типа бывает очень громоздким и не всегда понятным. В своей работе я предлагаю рассмотреть решение задач на дифференцированные платежи с помощью таблицы. Учащиеся учатся, в процессе изучения математики в школе, решать текстовые задачи с помощью таблицы. Таблицы позволяют показать, как использовать данные задачи, выявить закономерность и найти путь решения. Говоря другими словами , таблица позволяет "разложить все по полочкам". Условия задач я брала из сборников для подготовке к ЕГЭ по математике, под редакцией И.В.Ященко и на сайте https://ege.sdamgia.ru/. Решение первых задач выполнено без использования таблицы, в остальных задачах для решения использовалась таблица. Надеюсь, что моя работа кому-то поможет быстро и правильно решать сложные задачи на дифференцированные платежи.
Скачать:
Вложение | Размер |
---|---|
zadacha_no17_differentsirovannye_platezhi.docx | 34.75 КБ |
Предварительный просмотр:
Решение задач на дифференцированные платежи при подготовке к ЕГЭ по математике
1.Дифференцированные платежи
Кредиты играют важную роль в жизни населения со средним достатком. Тем, кто не может позволить себе единовременную оплату из собственных средств при покупке недвижимости или другого дорогостоящего имущества, кредиты просто необходимы.
Какие существуют виды платежей по кредитам?
В чём же разница между аннуитетным и дифференцированным платежами и какой платёж выгоднее?
Дифференцированные платежи
При дифференцированных платежах сумма основного долга, так называемое тело долга, делится равными частями на весь срок платежа, а проценты ежемесячно начисляются на остаток долга. Соответственно, в первый месяц суммы платежей велики, потому что проценты по кредиту существенны.
А к концу срока выплаты будут минимальны. Дифференцированные платежи удобны для тех, у кого доход не носит характер неизменной величины, и через некоторое время может появиться возможность досрочно погасить долг. В этом случае переплата по кредиту будет меньше, чем при аннуитетном расчёте.
Аннуитетные платежи
Отличие аннуитетного платежа от дифференцированного в том, что сумма ежемесячного взноса всегда неизменна, но вот структура этой суммы меняется из месяца в месяц.
Основную часть в первые месяцы составляют проценты по кредиту, а сумма тела долга — минимальна. Таким образом банк страхует риски недополучения прибыли в случае досрочного погашения кредита заёмщиком.
При дифференцированном платеже ежемесячные платежи становятся меньше, сумма основного долга в платеже всегда будет одной и той же. А вот проценты, начисляемые на остаток основного долга, будут уменьшаться по мере выплаты кредита. Ежемесячная сумма основного долга считается следующим образом: сумма кредита делится на количество платежей.
Кредиты с дифференцированными платежами выдавались в Сбербанке до 2011 года, а сейчас выдаются только с аннуитетными.
В подавляющем большинстве случаев банки предлагают своим заемщикам аннуитетную схему погашения задолженности. Однако в некоторых случаях можно выбрать дифференцированный платеж - тип выплаты кредита, при котором размер взносов постепенно уменьшается. Для заемщика пользоваться дифференцированными платежами выгоднее, чем фактически стандартной аннуитетной схемой.
Как рассчитать дифференцированный платеж?
Платеж при дифференцированной схеме делится на две части:
- основную, которая уходит на погашение тела кредита;
- процентную, которая является чистой прибылью банка.
Основную часть платежа высчитать просто по такой формуле:
Платеж =
Так, если заемщик взял в кредит 300 тыс. рублей под 22% годовых на 5 лет, то размер основной части составит:
300000 / 60 = 5000 рублей
Вторая часть платежа - процентная - рассчитывается по такой схеме:
Платеж = остаток основного долга * годовая ставка / 12
Так, проценты за первый месяц пользования кредита составят:
300000 * 0.22 / 12 = 5500 рублей
Путем сложения определяем размер платежа на первый месяц: 5000 + 5500 = 11000 рублей.
Для того, чтобы рассчитать проценты за любой месяц, необходимо узнать остаток задолженности. Если за второй месяц размер общего долга можно узнать путем простого вычитания из 300000 рублей первого платежа в 5000 рублей, то за 10-ый или 25-ый значение можно вычислить по такой схеме:
Остаток долга = общий размер долга - (размер основного платежа * количество прошедших месяцев).
Так, за 10-ый месяц процентная часть будет равна:
(300000 - 5000 * 9) * 0.22 / 12 = 4675
общий размер платежа: 9675 рублей.
За 25-й месяц:
(300000 - 5000 * 24) * 0.22 / 12 = 3300
Общий размер платежа: 8300 рублей.
Как видите, по сравнению с первым месяцем заемщику придется платить на 1700 рублей меньше. Проценты за самый последний месяц будут минимальными:
(300000 - 5000 * 59) * 0.22 / 12 = 91.67
В целом дифференцированную схему погашения кредита используют для небольших займов или при достаточно высоком уровне дохода. Тогда первые платежи не будут столь обременительны для вашего бюджета, а сниженный размер переплат позволит сэкономить и, возможно, потратить высвободившиеся средства для досрочного погашения кредита.
2. Решение задач.
Рассмотрим решение задач на дифференцированные платежи. Задачи можно найти в любом сборнике для подготовки к ЕГЭ по математике.
Учитывая, что платеж при дифференцированной схеме делится на две части:
основную и процентную, то при решении задач удобно составлять таблицу, в которой основная ежемесячная (ежегодная) часть платежа остается неизменной, а процентная часть меняется.
Решим несколько задач.
№1.
15-го января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастёт на r% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 30% больше суммы, взятой в кредит. Найдите r.
Решение.
Пусть S-сумма кредита, r-проценты банку, n=19 (число выплат).
Известно, что долг уменьшается на одну и ту же сумму.
Долг банку:
- это ежемесячные выплаты процентов банку.
Зная, что эти выплаты составляют 30% общей суммы кредита, составим уравнение:
(сумма арифметической прогрессии, где , n=19)
Ответ: 3%.
Примечание.
Выведем формулу для вычисления переплат банку, используя формулу суммы арифметической прогрессии, где
.(формула 1)
Тогда при , r=3
№2.
15-го января планируется взять кредит в банке на 25 месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастёт на r% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 13% больше суммы, взятой в кредит. Найдите r.
Решение.
Пусть S-сумма кредита, r-проценты банку, n=25 (число выплат).
Известно, что долг уменьшается на одну и ту же сумму. Тогда
Или по формуле (1) n=25, , r=1%.
Ответ: 1%
№3.
15-го января планируется взять кредит в банке на 2 года. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастёт на r% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 25% больше суммы, взятой в кредит. Найдите r.
Решение.
Пусть S-сумма кредита, r-проценты банку, n= 2 года=24месяца (число выплат).
n | Долг | Проценты | Платеж по кредиту (ежемесячный) | Остаток |
1 | S | |||
2 | ||||
3 | ||||
……. | ||||
23 | ||||
24 | 0 |
Если общая сумма выплат после полного погашения кредита на 25% больше суммы, взятой в кредит, это означает, что сумма всех ячеек в столбце “Проценты” равна 0,25 от изначального долга (S):
Ответ: 2%
№4.
15 января планируется взять кредит в банке на 24 месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2 % по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного погашения равнялась 1 млн рублей?
Решение.
S-сумма кредита, n=24 месяца, r=2%, Sобщ=1млн=1000тыс рублей
Составим таблицу.
n | Долг | Проценты | Платеж по кредиту (ежемесячный) | Остаток |
1 | S | 0,02S | ||
2 | ||||
3 | ||||
……. | ||||
23 | ||||
24 | 0 |
Sобщ=1млн=1000тыс рублей
Общая сумма платежей состоит из суммы кредита и процентов банку.
Sобщ=S+ 0,02S (. Числа, стоящие в скобках, образуют арифметическую прогрессию.
S+0,02S (, S·(1+0,02·12,5)=1000, S=тыс рублей
Ответ: 800000 руб
№5.
В июле планируется взять кредит в банке на сумму 28 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:
— каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга;
— в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.
Чему будет равна общая сумма выплат после полного погашения кредита, если наибольший годовой платёж составит 9 млн рублей?
Решение.
S-сумма кредита, n-целое число лет, r=25%, Sобщ=28млн рублей
Составим таблицу.
n | Долг | Проценты | Платеж | Остаток |
1 | 28млн | 0,25·28=7млн | ||
2 | ||||
……. | ||||
n-1 | ||||
n | 0 |
Наибольший годовой платеж -первый.
7+= 9млн, n=14
Sобщ=28+ 7 ()=28+7·+·7=80,5млн
Ответ: 80500000 рублей
№6.
15 января планируется взять кредит в банке на 21 месяц. Условия его возврата таковы:
- 1-го числа каждого месяца долг возрастает на 2 % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца. Известно, что на 11-й месяц кредитования нужно выплатить 44,4 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования?
n | Долг | Проценты | Платеж по кредиту (ежемесячный) | Остаток |
1 | S | 0,02S | ||
2 | ||||
……… | ||||
11 | ||||
……. | ||||
23 | ||||
24 | 0 |
По условию за 11 месяц было выплачено 44,4 тыс.рублей. Составим уравнение
Ответ: 932,4 тыс рублей
№ 7.
15-го января планируется взять кредит в банке на сумму 1300 тысяч рублей на 16 месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 15-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;
— 15-го числа 15-го месяца долг составит 100 тысяч рублей;
— к 15-му числу 16-го месяца кредит должен быть полностью погашен. Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1636 тысяч рублей.
Произведем некоторые вычисления.
1300 тыс-100 тыс=1200тыс.
n | Долг | Проценты | Платеж по кредиту (ежемес) | Остаток |
1 | 1300 | |||
2 | ||||
……. | ||||
15 | ||||
16 | 0 |
Общая сумма платежей состоит из суммы кредита и процентов банку.
Ответ: r = 3%
№ 8.
15-го января планируется взять кредит в банке на 11 месяц. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3 % по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 10-й долг должен быть на 80 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— к 15-му числу 11-го месяца кредит должен быть полностью погашен;
Какой долг будет 15-го числа 10-го месяца, если общая сумма выплат после полного его погашения составит 1198 тысячи рублей?
Пусть х тыс. рублей будет долг 15-го числа 10-го месяца.
n | Долг | Проценты | Платеж | Остаток |
1 | 800+x | |||
2 | ||||
……. | ||||
10 | ||||
11 | 0 |
Общая сумма платежей состоит из суммы кредита и процентов банку.
Ответ: тыс. рублей
№ 9.
15-го декабря планируется взять кредит в банке на сумму 1000 тысяч рублей на (n+1) месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по n-й долг должен быть на 40 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— 15-го числа n-го месяца долг составит 200 тысяч рублей;
— к 15-му числу (n+1)-го месяца кредит должен быть полностью погашен.
Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1378 тысяч рублей.
Считаем n.
n | Долг | Проценты | Платеж | Остаток |
1 | 1000 | |||
2 | ||||
……. | ||||
20 | ||||
21 |
Общая сумма платежей состоит из суммы кредита и процентов банку.
.
Числа в скобках образуют арифметическую прогрессию, сумму которой найдем по формуле.
Ответ: %
По теме: методические разработки, презентации и конспекты
Решение задач с практическим содержанием для подготовки к ЕГЭ
Цель дидактического материала: отработать навыки решения задач с практическим содержанием, развитие умений оценивать результаты выполненных действий, умение применять полученные знания при решении зад...
Дифференцированный подход при подготовке к ЕГЭ по математике
побудить и способствовать формированию различных активных видов деятельности учащихся по подготовке к ЕГЭ...
Методическая разработка урока по информатике "Решение задач с применением графа при подготовке к ЕГЭ" - 2014 г.
Урок выстроен по ФГОС на районный конкурс методических разработок уроков «Современный урок в условиях реализации ФГОС» номинация "Урок с позиции УУД"...
РЕШЕНИЕ ЗАДАЧ С ПРАКТИЧЕСКИМ СОДЕРЖАНИЕМ ПРИ ПОДГОТОВКЕ К ОГЭ ПО МАТЕМАТИКЕ В ВЕЧЕРНЕЙ (СМЕННОЙ) ШКОЛЕ. МОДУЛЬ ГЕОМЕТРИЯ.
Подготовка к ОГЭ в вечерней школе...
Мастер-класс "Различные способы решения задач на многогранники в рамках подготовки учащихся к ЕГЭ по математике"
Рассмотрены основные задачи по стереометрии и различные подходы к их решению...
Презентация "Решение задач на применение законов фотоэффекта" (подготовка к ЕГЭ)
Презентация для подготовки учащихся 11 класса к ЕГЭ по теме "Решение задач на применение законов фотоэффекта"...