Презентация "Исследование функции на монотонность"
презентация к уроку по алгебре (10 класс)
Презентация предназначена для урока в 10 классе. Рассчитана на учебник под редакцией Мордковича А.Г. Содержит устные упражнения (для повторения изученного материала), объяснение новой темы, упражнения для закрепления идля самостоятельной работы, домашнее задание, подведение итогов урока.
Скачать:
Вложение | Размер |
---|---|
презентация к уроку алгебры | 501.05 КБ |
Предварительный просмотр:
Подписи к слайдам:
Устная работа Найти производную функции : 1)f(x)=3 +5x 2)f(x)= 3 3)f(x)=10 +2x-2 4)f(x)=2x- cos x A) f ΄ (x)=4 Б) f ΄ (x )=30 +2 В) f ΄ (x )=2+sin x Г) f ΄ (x )=6x+5
Устная работа По графику определить промежутки возрастания и убывания Функция возрастает на (- Функция убывает на [-3;4]. -3 -0 ,5 7 4 х f(x) у
Устная работа По графику определить промежутки возрастания и убывания Функция возрастает на (- Функция убывает на [4;+ На промежутке [-2;4] y=C ( const ) -2 4
Новый материал Ранее, исследуя функцию на монотонность, мы полагались, в основном на наглядно-интуитивные представления и убедилсиь в том, что нахождение промежутков возрастания и убывания – это порой очень не простая задача! Но теперь уровень наших знаний позволяет нам овладеть универсальным способом исследования функций на монотонность. Этот способ, как вы уже догадались, связан с понятием производной. Итак, тема урока: Исследование функций на монотонность
Новый материал Обратимся к геометрическому смыслу производной. Итак, f ΄ (x)=k= tg k - ? Проведем касательную к графику функции в точке с абсциссой –о,5. Какой угол образует касательная с осью ОХ? (угол-тупой, ΄ (x) Проведем касательную к графику функции в точке с абсциссой 7 . Какой угол образует касательная с осью ОХ? ( угол - острый, ΄ (x) -3 -0 ,5 7 4 х f(x) у
Новый материал Попробуем сделать вывод о том, как связана монотонность функции и знак ее производной!? 1) если на множестве Х функция возрастает, то производная положительна. 2)если на множестве Х функция убывает, то производная отрицательна. Заметим также, что гораздо важнее и обратные утверждения, показывающие как по знаку производной можно установить характер монотонности функции: Теорема 1)Если на множестве Х f ΄ (x)>0 , f(x) – возрастает. Теорема 2)Если на множестве Х f ΄ ( x)<0 , f(x) – убывает.
Новый материал А что будет происходить с функцией, если на всём множестве Х производная равна 0? На этом множестве функция не убывает и не возрастает. Такая функция называется постоянной y=C ( const ) . Теорема 3) Если во всех точках множества Х f ΄ (x)=0, то фукнция f(x) постоянна на множестве Х. -2 4
Новый материал Рассмотрим пример: Найти промежутки убывания и возрастания функции у=2 +3 -1 Решение: 1) D(f)=R 2)f ΄ (x)=6 +6x = 6x(x+1) 3) f ΄ (x )=0 при х=0 и х=-1 (нули производной) + - + f(x) 0 x На промежутке (- функция возрастает (т.к. производная положительна. На промежутке [-1;0] функция убывает (т.к. производная отрицательна) f ΄ (x) -1
Закрепление Разобрать задания из учебника № 30.1, 30.4 – устно № 30.7, 30.9 (г), 30.10 (б), 30.13 (в) и 30.15 (в) № 30.1 а) f ΄ (x) f ΄ ( x) d. в) f ΄ (x) d, f ΄ (x) b и c . № 30.4 На рисунке 53 изображен график производной. Функция убывает на промежутке [4;+ ) , т.к. на этом промежутке производная принимает отрицательные значения (график ниже оси ОХ).
Закрепление № 30.7 Эскиз графика: 1
Самостоятельная работа Исследовать функцию на монотонность 1 вариант. у= - 27 х 2 вариант. у= - 3 +9х
Домашнее задание Прочитать§ 30 п. 1, выучить теоремы 1,2,3. № 30.8, 30.9 ( аб ), 30.10, 30.12-30.16 (а)
Итог урока Что нового мы узнали на уроке? Сформулируйте теоремы, связывающие знак производной и характер монотонности функции. Как ведет себя функция на промежутке, если известно, что производная отрицательна? А если производная положительна? Как называется функция у=С?
Спасибо за внимание!
По теме: методические разработки, презентации и конспекты
Производная. Геометрический смысл производной. Применение производной для исследования функций на монотонность и экстремумы
Урок обобщения и систематизации знаний. Осуществляется подготовка к ЕГЭ по заданиям с производной. Используются различные формы работы (фронтальная, групповая, самостоятельная работа учащихся)....
Урок "Исследование функции на монотонность и экстремумы" 10 класс
Данный урок предназначен для подготовки учащихся к ЕГЭ и решению заданий В8 и В14. Проводится он в 10 классе....
Применение производной для исследования функции на монотонность и экстремумы.
Помещаемый материал представляет собой разработку урока-презентации по алгебре и началам анализа 10 класс ( учебник А.Г.Мордкович) по теме: " Применение производной для исследования функции на ...
План-конспект к уроку математики на тему: "Применение производной к исследованию функции на монотонность, экстремумы"
План-коснпект к уроку математики в 11 классе на тему: "Применение производной к исследованию функции на монотонность, экстремумы". Решение задач на нахождение наибольших и наименьших значений фун...
Исследование функции на монотонность
повторить изученные функции; ввести понятие убывающей и возрастающей функций; формировать умение определять какой (убывающей или возрастающей) является функция....
Исследование функции на монотонность
повторить изученные функции; ввести понятие убывающей и возрастающей функций; формировать умение определять какой (убывающей или возрастающей) является функция....
Исследование функции на монотонность
Урок по алгебре, 10 класс. Алгебра и начала анализа. 10 класс. В 2 ч. Ч.1. Учебник для общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. – 4-е изд., доп. – М.:...