Адаптированная образовательная программа по предмету «Алгебра»
методическая разработка по алгебре

 Кухарева Ирина Александровна

Адаптированная основная общеобразовательная программа основного общего образования по предмету алгебра составлена

учителем математики ВКК МБОЙ СОШ №94 г. Воронеж Кухаревой И.А.

 

Скачать:


Предварительный просмотр:

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ СОШ №94

имени Героя Советского Союза генерала А.И. Лизюкова

Адаптированная образовательная программа

по предмету «Алгебра»

Разработана: учителем математики ВКК

Кухаревой И.А.

Воронеж 2017

Адаптированная основная общеобразовательная программа основного общего образования по предмету алгебра составлена на основании:

- Приказа Министерства образования и науки Российской Федерации от 17.12.2010 г. № 1897 «Об утверждении и введении в действие Федерального государственного образовательного стандарта основного общего образования»;

 - Приказа Министерства образования и науки Российской Федерации от 31.03.2014 г. № 253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ основного общего образования»;

- Приказа Министерства образования и науки Российской Федерации от 08.06.2015 г. № 576 «О внесении изменений в федеральный перечень учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ основного общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 31 марта 2014 г. № 253»;

 - Приказа Министерства образования и науки Российской Федерации от 21.04.2016 г. № 459 «О внесении изменений в федеральный перечень учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ основного общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 31 марта 2014 г. № 253»;

 - Приказа Министерства образования и науки РФ от 31 декабря 2015 г. № 1577 «О внесении изменений в федеральный государственный образовательный стандарт основного общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897»,

- Примерной программы по предмету;

- Основной образовательной программы основного общего образования МБОУ СОШ № 94 имени генерала Лизюкова А.И.


  1. Результаты освоения учебного предмета, курса

Данная адаптированная образовательная программа учебного предмета геометрия учитывает особенности психофизического развития обучающихся с ОВЗ, составлена в соответствии с принципами коррекционной педагогики. При разработке адаптированной образовательной программы учитывались специфические особенности обучения детей с ограниченными возможностями здоровья.

Особые образовательные потребности обучающихся с ОВЗ. Все обучающиеся с ОВЗ испытывают в той или иной степени выраженные затруднения в усвоении учебных программ, обусловленные недостаточными познавательными способностями, специфическими расстройствами психологического развития, нарушениями в организации деятельности и/или поведения. Общими для всех обучающихся с ОВЗ являются в разной степени выраженные недостатки

∙ в формировании высших психических функций (отмечаются нарушения внимания, памяти, восприятия и др. познавательных процессов),

∙ замедленный темп, либо неравномерное становление познавательной деятельности,

∙ трудности произвольной саморегуляции,

∙ нарушения речевой и мелкой ручной моторики,

 ∙ нарушения или недостаточно сформированные зрительное восприятие и пространственная ориентировка,

∙ снижение умственной работоспособности и целенаправленности деятельности, в той или иной степени затрудняющие усвоение школьных норм и школьную адаптацию в целом,

 ∙ сформированы недостаточно произвольность и самоконтроль,

 ∙ обучаемость удовлетворительная, но часто избирательная и неустойчивая, зависящая от уровня сложности и субъективной привлекательности вида деятельности, а также от актуального эмоционального состояния ребенка.

Коррекционные задачи

1.Развитие зрительного восприятия и узнавания.

2. Совершенствование моторного развития, каллиграфических и графических навыков.

3. Совершенствование речевого развития: Обогащение и систематизация словаря. Развитие устной монологической и диалогической речи.

4. Развитие словесно-логического мышления. Формирование умения понимать и задавать вопрос. Развитие способности обобщать. Развитие способности группировать предметы по определенным признакам, классифицировать их. Развитие умения устанавливать закономерности и логические связи в ряду предметов, символов, событий, явлений. Развитие логических операций (анализ, обобщение, синтез). Развитие умения логически выстраивать высказывание, составлять рассказы по картинкам. Развитие умения понимать и устанавливать смысловые аналогии. Развитие логического запоминания.

6. Развитие навыков самоконтроля и самооценки. Развитие умения работать по словесной и письменной инструкции. Формирование умений действовать по правилу, работать по алгоритму, инструкции, плану. Совершенствование умения планировать свою деятельность. Выработка умения контролировать себя при помощи усвоенного правила. Овладение осознанным планомерным контролем в процессе написания и при проверке написанного. Развитие комбинаторных способностей.

Результаты освоения учебного предмета, курса

Программа обеспечивает достижения следующих результатов освоения образовательной программы основного общего образования:

        личностные:

  1. формирование ответственного отношения к учению, готовности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
  2. формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
  3. формирование коммуникативных навыков в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
  4. умения грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры;
  5. умение контролировать процесс и результат учебной математической деятельности;
  6. способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

        

метапредметные:

  1. умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
  2. умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение  и выводы;
  3. формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
  4. первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
  5. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
  6. умения находить в различных источниках информацию, необходимую для решения математических проблем;
  7. умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
  8. понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
  9. умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

        предметные:

  1. формирование представлений о математике как о методе познания действительности, позволяющем описывать и изучать реальные процессы и явления:

осознание роли математики в развитии России и мира;

возможность привести примеры из отечественной и всемирной истории математических открытий и их авторов;

2) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), проводить классификации, логические обоснования, доказательства математических утверждений:

оперирование понятиями:        множество, элемент множества, подмножество, принадлежность, нахождение пересечения, объединения подмножества в простейших ситуациях;

решение сюжетных задач разных типов на все арифметические действия;

составление плана решения задачи, выделение этапов ее решения, интерпретация вычислительных результатов в задаче, исследование полученного решения задачи;

нахождение процента от числа, числа по проценту от него, нахождения процентного отношение двух чисел, нахождения процентного снижения или процентного повышения величины;

решение логических задач;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений:

выполнение округления чисел в соответствии с правилами;

сравнение чисел;

оценивание значения квадратного корня из положительного целого числа;

4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований выражений, решения уравнений, систем уравнений, неравенств и систем неравенств:

выполнение несложных преобразований для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;

выполнение несложных преобразований целых, дробно рациональных выражений и выражений с квадратными корнями; раскрывать скобки, приводить подобные слагаемые, использовать формулы сокращенного умножения;

решение линейных и квадратных уравнений и неравенств, уравнений и неравенств сводящихся к линейным или квадратным, систем уравнений и неравенств, изображение решений неравенств и их систем на числовой прямой;

5) овладение системой функциональных понятий:

определение положения точки по ее координатам, координаты точки по ее положению на плоскости;

нахождение по графику значений функции, области определения, множества значений, нулей функции, промежутков знакопостоянства, промежутков возрастания и убывания, наибольшего и наименьшего значения функции;

построение графика линейной и квадратичной функций;

оперирование на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

использование свойств линейной и квадратичной функций и их графиков при решении задач из других учебных предметов;

6) овладение простейшими способами представления и анализа статистических данных; формирование представлений о простейших вероятностных моделях:

формирование представления о статистических характеристиках, вероятности случайного события;

решение простейших комбинаторных задач;

определение основных статистических характеристик числовых наборов;

оценивание и вычисление вероятности события в простейших случаях;

9) развитие умений применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин:

распознавание верных и неверных высказываний;

оценивание результатов вычислений при решении практических задач;

выполнение сравнения чисел в реальных ситуациях;

использование числовых выражений при решении практических задач и задач из других учебных предметов;

решение практических задач с применением простейших свойств фигур;

выполнение простейших построений и измерений на местности, необходимых в реальной жизни.

Планируемые результаты изучения учебного предмета, курса

Натуральные числа. Дроби. Рациональные числа

Выпускник научится:

  • понимать особенности десятичной системы счисления;
  • оперировать понятиями, связанными с делимостью натуральных чисел;
  • выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
  • сравнивать и упорядочивать рациональные числа;
  • выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

Выпускник получит возможность:

  • познакомиться с позиционными системами счисления с основаниями, отличными от 10;

•углубить и развить представления о натуральных числах и свойствах делимости;

  • использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты;
  • научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Выпускник научится:

  • использовать начальные представления о множестве действительных чисел;
  • оперировать понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

  • развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;
  • развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения, приближения, оценки

Выпускник научится:

  • использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

  • понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
  • понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

Алгебраические выражения

Выпускник научится:

  • оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
  • выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
  • выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
  • выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

  • выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
  • применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наиболъшего/наименъшего значения выражения).

Уравнения

Выпускник научится:

  • решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
  • понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
  • применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

  • овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
  • применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

  • понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
  • решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

Выпускник получит возможность научиться:

  • разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;
  • применять аппарат неравенств для решения задач из различных разделов курса;
  • применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции

Выпускник научится:

  • понимать и использовать функциональные понятия и язык (термины, символические обозначения);
  • строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

Выпускник получит возможность научиться:

  • понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами;
  • проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);
  • использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

  • понимать и использовать язык последовательностей (термины, символические обозначения);
  • применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться.

  • решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;
  • понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.

Описательная статистика

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.


  1. Содержание учебного предмета, курса

Арифметика

Рациональные числа. Положительные и отрицательные числа, модуль числа. Множество целых чисел. Множество рациональных чисел; рациональное число как отношение m/n, где т — целое число, n— натуральное. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий. Степень с целым показателем.

Действительные числа. Квадратный корень из числа. Корень третьей степени. Запись корней с помощью степени с дробным показателем.

Понятие об иррациональном числе. Иррациональность числа  и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел.

Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки.

Измерения, приближения, оценки. Единицы измерения длины, площади, объема, массы, времени, скорости. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя — степени десяти в записи числа.

Приближённое значение величины, точность приближения. Округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.

Алгебра

Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и её свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат

разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трёхчлен; разложение квадратного трёхчлена на множители.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и её свойства.

Рациональные выражения и их преобразования. Доказательство тождеств.

Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям.

Уравнения. Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвёртой степеней. Решение дробно-рациональных уравнений.

Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Примеры решения систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства. Числовые неравенства и их свойства.

Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.

Функции

Основные понятия. Зависимости между величинами. Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.

Числовые функции. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, ее график и свойства. Квадратичная функция, ее график и свойства. Степенные функции с натуральными показателями 2 и 3 их графики и свойства. Графики функций , , .

Числовые последовательности. Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой п-го члена.

Арифметическая и геометрическая прогрессии. Формулы п-го члена арифметической и геометрической прогрессий, суммы первых n членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

Вероятность и статистика

Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах, дисперсия. Представление о выборочном исследовании.

Случайные события и вероятность. Понятие о случайном опыте и случайном событии. Элементарные события. Частота случайного события. Статистический подход к понятию вероятности. Несовместные события. Формула сложения вероятностей. Вероятности противоположных событий. Независимые события. Умножение вероятностей. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.

Комбинаторика. Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.

Логика и множества

Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера—Венна.

Элементы логики. Понятие о равносильности, следовании, употребление логических связок если..., то, в том и только в том случае, логические связки и, или.

Математика в историческом развитии

История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магницкий. Л. Эйлер.

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма. Ф. Виет. Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, большей четырёх. Н. Тарталья, Дж. Кардано, Н. X. Абель. Э. Галуа.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.


  1. Тематическое планирование

Алгебра 7-9 класс

Ю.Н Макарычев, Н.Г.Миндюк, К.И.Нешков и др. «Алгебра 7», «Алгебра 8», «Алгебра 9»

Название темы, раздела программы

Количество часов*

7 класс

105

1

Выражения, тождества, уравнения.

22

2

Функции

11

3

Степень с натуральным показателем

11

4

Многочлены

17

5

Формулы сокращённого умножения

19

6

Системы линейных уравнений

16

7.

Повторение

5

Резерв.

4

8 класс

105

1

Рациональные дроби

23

2

Квадратные корни

19

3

Квадратные уравнения

21

4

Неравенства

20

5

Степень с целым показателем. Элементы статистики

11

6

Повторение

8

Резерв

3

9 класс

102

1.

Квадратичная функция.

22

2.

Уравнения и неравенства с одной переменной.

14

3.

Уравнения и неравенства с двумя переменными.

17

4.

Арифметическая и геометрическая прогрессии.

15

5.

Элементы комбинаторики и теории вероятностей.

13

6.

Повторение.

18

Резерв

3

*Количество часов может варьироваться о индивидуальных учебных потребностей обучающегося.


По теме: методические разработки, презентации и конспекты

Адаптированная образовательная программа по предмету "Музыкальная литература"

Адаптированная образовательная программа по предмету "Музыкальная литература" для учащихся 5-8 классов музыкального отделения гимназии. Программа составлена на основе программы по музыкальной литерату...

Адаптированная образовательная программа по предмету "Музыкальная литература" для учащихся 5-8 классов музыкального отделения гимназии

Данная авторская адаптированная программа предназначена для использования в курсе восьмилетнего начального музыкального образования: в музыкальных школах, музыкальных отделениях гимназий. 1 год обучен...

Адаптированная образовательная программа по предмету «Письмо и развитие речи» для 8 класса

                         Пояснительная запискаРабочая программа составлена на основании:Программы специальных (коррекционных) об...

АДАПТИРОВАННАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА по предмету «ФИЗИЧЕСКАЯ КУЛЬТУРА» учителя физической культуры ПРОЖИРОВОЙ ОКСАНЫ ВАСИЛЬЕВНЫ НА 2016 – 2017 УЧЕБНЫЙ ГОД

Цель программы - формирование у обучающихся устойчивых мотивов и потребностей в бережном отношении к своему здоровью, целостном развитии физических и психических качеств, творческом использовании...

АДАПТИРОВАННАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА по предмету «ФИЗИЧЕСКАЯ КУЛЬТУРА» учителя физической культуры Прожировой Оксаны Васильевны на 2016 – 2017 учебный год 1 класс

Настоящая рабочая учебная адаптированная программа составлена на основании авторской программы «Физическое воспитание для 1 - 4 классов», авт.: В. М. Белов, В. С. Кувшинов, В. М. Мозговой ...

АДАПТИРОВАННАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА по предмету «ФИЗИЧЕСКАЯ КУЛЬТУРА» учителя физической культуры ПРОЖИРОВОЙ ОКСАНЫ ВАСИЛЬЕВНЫ НА 2016 – 2017 УЧЕБНЫЙ ГОД

Цель программы - формирование у обучающихся устойчивых мотивов и потребностей в бережном отношении к своему здоровью, целостном развитии физических и психических качеств, творческом использовании...

Адаптированная рабочая программа учебного предмета «Алгебра» для __7-10___ классов

Аннотация к адаптированной рабочей программе учебного предмета «Алгебра» для 7-10 классов  для учащихся с ТНРУчебный предмет «Алгебра» включен в предметную область «...