Рабочая программа 9 класс
рабочая программа по алгебре (9 класс)
Предварительный просмотр:
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Рабочая программа соответствует положениям Федерального государственного образовательного стандарта основного общего образования, в том числе требованиям к результатам освоения основной образовательной программы, фундаментальному ядру содержания общего образования, Примерной программе по математике. Программа отражает идеи и положения Концепции духовно-нравственного развития и воспитания личности гражданина России, Программы формирования универсальных учебных действий (УУД), составляющих основу для саморазвития и непрерывного образования, выработки коммуникативных качеств, целостности общекультурного, личностного и познавательного развития учащихся.
Цели и задачи обучения
. Обучение математике в основной школе направлено на достижение следующих целей:
- в направлении личностного развития:
- Формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
- Развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
- Формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
- Воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
- Формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
- Развитие интереса к математическому творчеству и математических способностей;
2) в метапредметном направлении:
- Развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
- Формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
3) в предметном направлении:
- Овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
- Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
Планируемые результаты освоения учебного предмета
Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов:
Личностные
Приоритетное внимание уделяется формированию:
• умений ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контпримеры;
• критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
• креативности мышления, инициативы, находчивости, активности при решении математических задач;
• выраженной устойчивой учебно-познавательной мотивации и интереса к учению;
• готовности к самообразованию и самовоспитанию;
• адекватной позитивной самооценки;
Воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения
Регулятивные
Обучающийся получит возможность научиться:
• самостоятельно ставить новые учебные цели и задачи;
• при планировании достижения целей самостоятельно, полно и адекватно учитывать условия и средства их достижения;
• выделять альтернативные способы достижения цели и выбирать наиболее эффективный способ;
• основам саморегуляции в учебной и познавательной деятельности в форме осознанного управления своим поведением и деятельностью, направленной на достижение поставленных целей;
• осуществлять познавательную рефлексию в отношении действий по решению учебных и познавательных задач;
• адекватно оценивать объективную трудность как меру фактического или предполагаемого расхода ресурсов на решение задачи;
• адекватно оценивать свои возможности достижения цели определённой сложности в различных сферах самостоятельной деятельности;
• основам саморегуляции эмоциональных состояний;
• прилагать волевые усилия и преодолевать трудности и препятствия на пути достижения целей.
Коммуникативные
Обучающийся получит возможность научиться:
• учитывать и координировать отличные от собственной позиции других людей в сотрудничестве;
• учитывать разные мнения и интересы и обосновывать собственную позицию;
• понимать относительность мнений и подходов к решению проблемы;
• продуктивно разрешать конфликты на основе учёта интересов и позиций всех участников, поиска и оценки альтернативных способов разрешения конфликтов; договариваться и приходить к общему решению в совместной деятельности;
• брать на себя инициативу в организации совместного действия (деловое лидерство);
• оказывать поддержку и содействие тем, от кого зависит достижение цели в совместной деятельности;
• осуществлять коммуникативную рефлексию как осознание оснований собственных действий и действий партнёра;
• в процессе коммуникации достаточно точно, последовательно и полно передавать партнёру необходимую информацию как ориентир для построения действия;
• вступать в диалог, а также участвовать в коллективном обсуждении проблем, участвовать в дискуссии и аргументировать свою позицию, владеть монологической и диалогической формами речи;
• следовать морально-этическим и психологическим принципам общения и сотрудничества на основе уважительного отношения к партнёрам, внимания к личности другого, адекватного межличностного восприятия, готовности адекватно реагировать на нужды других, в частности оказывать помощь и эмоциональную поддержку партнёрам в процессе достижения общей цели совместной деятельности;
• устраивать эффективные групповые обсуждения и обеспечивать обмен знаниями между членами группы для принятия эффективных совместных решений;
• в совместной деятельности чётко формулировать цели группы и позволять её участникам проявлять собственную энергию для достижения этих целей.
Познавательные
Обучающийся получит возможность научиться:
• ставить проблему, аргументировать её актуальность;
• самостоятельно проводить исследование на основе применения методов наблюдения и эксперимента;
• выдвигать гипотезы о связях и закономерностях событий, процессов, объектов;
• организовывать исследование с целью проверки гипотез;
• делать умозаключения (индуктивное и по аналогии) и выводы на основе аргументации.
В ходе освоения содержания курса учащиеся получат возможность:
- развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
- овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
- изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
- получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
- сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Достижению целей программы обучения будет способствовать использование современных инновационных технологий:
- Технология уровневой дифференциации обучения
- Технология проблемно-развивающего обучения
- Здоровьесберегающие технологии
- Технологии сотрудничества
- Игровые технологии
- Проектная технология
- Информационные технологии.
МЕТОДЫ И ФОРМЫ РАБОТЫ:
Методы организации учебного процесса:
- беседа
- рассказ
- лекция
- дифференцированные задания
- взаимопроверка
- практическая работа
- самостоятельная работа
- тренинг
Формы организации учебного процесса:
- фронтальная,
- индивидуальная,
- групповая
- парная,
Формы контроля:
- текущий, промежуточный и итоговый контроль
- тест
- зачет
- математический диктант
- самоконтроль, взаимоконтроль.
Представленная программа может быть использована при работе с обучающимися с ОВЗ при условии использования:
- специальных методов, приемов и средств обучения (в том числе специализированные компьютерные технологии), обеспечивающие реализацию "обходных путей" обучения;
- индивидуализации обучения в большей степени, чем требуется для нормально развивающегося ребенка;
- особой пространственной и временной организации образовательной среды;
- максимально раздвинутого образовательного пространства за пределы образовательного учреждения.
В данной программе предусмотрена методика работы с одаренными детьми. В учебном процессе развитие одарённого ребёнка следует рассматривать как развитие его внутреннего деятельностного потенциала, способности быть автором, творцом активным созидателем своей жизни.
Методы работы с одаренными детьми:
- исследовательский;
- частично-поисковый;
- проблемный;
- проективный;
- синектика.
Описание места учебного предмета в учебном плане
Описание места учебного предмета, курса в учебном плане
Согласно федеральному базисному учебному плану для общеобразовательных учреждений Российской Федерации на изучение алгебры на ступени основного общего образования отводится 3 часа в неделю, общий объем 102 часа.
Математическое образование в основной школе складывается из следующих содержательных компонентов: арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно-емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Таким образом, в ходе освоения содержания курса учащиеся получают возможность:
- развить представление о месте и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
- овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
- изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
- развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
- получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- развить логическое мышление и речь – умение логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
- сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Содержание курса
Квадратичная функция (22 ч)
Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, её свойства и график. Неравенства второй степени с одной переменной. Метод интервалов.
Уравнения и неравенства с одной переменной (14 ч)
Целые уравнения. Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени.
Уравнения и неравенства с двумя переменными (17 ч)
Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.
Прогрессии (15 ч)
Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.
Элементы комбинаторики и теории вероятностей (13 ч)
Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.
Итоговое повторение (21 ч)
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры основной общеобразовательной школы.
Нормы оценки знаний, умений и навыков обучающихся по алгебре
1. Оценка письменных контрольных работ обучающихся по алгебре
Ответ оценивается отметкой «5», если:
работа выполнена полностью;
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Отметка «1» ставится, если:
работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
2. Оценка устных ответов обучающихся по алгебре
Ответ оценивается отметкой «5», если ученик:
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
отвечал самостоятельно, без наводящих вопросов учителя;
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике);
имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
не раскрыто основное содержание учебного материала;
обнаружено незнание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если:
ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.
По теме: методические разработки, презентации и конспекты
Рабочие программы по математике для 5 класса, по алгебре для 8 класса. УМК А. Г. Мордкович. Рабочие программы по геометрии для 7 и 8 класса. Программа соответствует учебнику Погорелова А.В. Геометрия: Учебник для 7-9 классов средней школы.
Рабочая программа содержит пояснительную записку, содержание учебного материала, учебно - тематическое планирование , требования к математической подготовке, список рекомендованной литературы, календа...
Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс
Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...
Рабочая программа по русскому языку 5 класс Разумовская, рабочая программа по литературе 5 класс Меркин, рабочая программа по русскому языку 6 класс разумовская
рабочая программа по русскому языку по учебнику Разумовской, Львова. пояснительная записка, календарно-тематическое планирование; рабочая программа по литературе 5 класс автор Меркин. рабочая программ...
Рабочие программы класс(география)
рабочие программы 5-9 класс(2019)...
Рабочие программы класс(обществознание )
рабочие программы 6-9 класс по учебнику Боголюбова...
рабочая программа класса предшкольной подготовки
рабочая программа класса предшкольной подготовки...
Рабочая программа по Биологии за 7 класс (УМК Сонина), Рабочая программа по Биологии для реализации детского технопарка Школьный кванториум, 5-9 классы, Рабочая программа по Биохимии.
Рабочая программа по биологии составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по биологи...