Решение задач алгебраическим методом
методическая разработка по алгебре (5 класс)
Знакомство с алгебраическим методом решения текстовых задач
Скачать:
Вложение | Размер |
---|---|
reshenie_tekstovyh_zadach_algebraicheskim_metodo1.docx | 26.38 КБ |
reshenie_tekstovyh_zadach_algebraicheskim_metodo1.docx | 26.38 КБ |
Предварительный просмотр:
РЕШЕНИЕ ТЕКСТОВЫХ ЗАДАЧ АЛГЕБРАИЧЕСКИМ МЕТОДОМ
Лиханова В.Е., учитель математики МБОУ «СОШ №12» г. Ноябрьск, ЯНАО
Наряду с арифметическим, практическим методами решения задач ученики 5 класса знакомятся и с алгебраическим методом. Многие ученики сначала не будут принимать новый метод, поэтому роль учителя на данном этапе должна заключаться в том, чтобы показать преимущества данного метода, но ни в коем случае не навязывать его. С этой целью необходимо предлагать задачи, которые арифметически решить трудно.
Особенностями алгебраического метода является введение переменной величины, что позволяет действовать с ней как с явной. Выполняется анализ основных зависимостей между явными и неявными значениями величин, производится моделирование условия задачи в виде уравнения. Если при выборе действий опираемся на сюжетные особенности, то такой метод решения называется алгебраическим. Следует отметить, что в учебнике «Математика 5» авторского коллектива: Г.В.Дорофеев, И.Ф. Шарыгин, Е.А. Бунимович, Л.В. Кузнецова существуют определенные недостатки по обучению решению задач алгебраическим методом. Самым главным из них является недостаточность системы упражнений, готовящих детей к усвоению данного метода, а именно на составление различных выражений по сюжету задач и выяснение их сюжетного смысла.
Необходимые базовые знания для решения задач алгебраическим методом:
- усвоение понятия переменной величины;
- умение решать простые и составные уравнения;
- умение составлять по тексту задачи простые и составные выражения и определять их сюжетный смысл;
- находить выражения с одинаковым сюжетным смыслом.
Основные этапы формирования умения решать задачи алгебраическим методом:
- Подготовительный.
- Этап ознакомления с алгоритмом рассуждения и записью решения задачи.
- Закрепление, выработка умения.
На первом этапе учитель должен познакомить учащихся с понятием «сюжетный смысл выражения», научить составлять всевозможные выражения по тексту задачи, определять их сюжетный смысл. Это можно сделать через следующую систему упражнений:
- Дать текст с числами. Составить по этому тексту несколько выражений, записать их смысл.
- Дать текст. Учитель составляет по этому тексту выражения, а ученики объясняют их смысл по тексту.
- Предложить задание, подобное предыдущему, но среди выражений должны быть такие, которые не имеют сюжетного смысла по данному тексту.
- По предложенному тексту с числами дети сами составляют выражения и определяют их смысл. В заключение находят выражения с одинаковым сюжетным смыслом.
- Дать задачу, показать способ обозначения величины, которую требуется найти в вопросе задачи через х, показать способ составления выражений по задаче с использованием этой неизвестной величины как с известной. Определить сюжетный смысл выражений по тексту задачи.
- По предложенному тексту учитель показывает сюжетный смысл одного из выражений. Детям предлагается составить выражение с тем же сюжетным смыслом.
У пруда росли липы, осины, березы и ели. Лип росло 12, осин – в 3 раза больше, чем лип, несколько елей, берез – на 5 меньше, чем елей. Составь различные выражения и объясни, что они обозначают.
Решение.
Учитель предлагает обозначить число елей буквой х, работать с ней как с обыкновенным числом. Можно составить следующие выражения:
12·3 – количество осин,
х-5 – количество берез,
12+х – количество лип и елей,
12+(х-5) – количество лип и берез,
12·3+(х-5)+х –общее количество осин, берез, елей.
Основная задача второго этапа – введение понятия «основание для составления уравнения», введение алгоритма рассуждения и развернутой формы записи решения задачи алгебраическим методом. Деятельность учителя может быть организована следующим образом.
- Дать текст задачи. Решить ее арифметическим методом.
- Предложить обозначить через х неизвестную величину, значение которой требуется найти.
- Составить ряд выражений по тексту и определить их сюжетный смысл.
- Найти выражения с одинаковым сюжетным смыслом. Сообщить детям, что если выражения имеют одинаковый смысл, то они равны.
- Составить равенство из двух выражений, в одно из которых входит переменная.
- Вместе с детьми определить, что данная запись является уравнением.
- Решить его и установить, что значение х и есть ответ.
- Сообщить учащимся, что сюжетный смысл выражений, которые мы использовали для составления уравнения, будем называть основанием для составления уравнения, а метод решения задачи – алгебраическим.
- Решить еще одну задачу таким же методом. Запомнить алгоритм рассуждений и полную форму записи решения задачи.
- Решив другую задачу, учитель предлагает проверить правильность решения задачи. Для этого необходимо вспомнить все известные способы проверки правильности решения, которые использовали ранее.
- Сообщить детям новый способ проверки. Для этого надо составить уравнение по другому основанию. Сделать вывод.
- Сопоставляя решения первой и второй задачи, учитель в процессе фронтальной беседы составляет алгоритм решения задачи алгебраическим методом.
Алгоритм решения задачи алгебраическим методом.
- Обозначить буквой неизвестную величину.
- Составить выражения.
- Выбрать основание.
- Составить уравнение.
- Решить уравнение.
6. Проверить правильность решения.
Знакомство с новым методом решения задачи можно начать:
- с простой задачи;
- сразу с составной.
В первом случае работа будет выполняться достаточно быстро, но учащиеся не увидят преимущества данного метода (ведь задача и так решена !).
Рассмотрим задачу. Ученики изготовили 135 елочных украшений, из них фонариков на 5 больше, чем хлопушек, а снежинок в 3 раза больше, чем снежинок. Сколько хлопушек изготовили дети?
Необходимо показать, что задача решается с помощью уравнения. Для этого надо ввести переменную величину. Обозначить буквой можно как число хлопушек, так и число фонариков, так и число снежинок (проще - число хлопушек). Составляем выражения с переменной.
Хлопушки- ? штук
Фонарики-?, на 5 штук больше 135 штук
Снежинки-?, в 3 раза больше
Пусть х штук хлопушек сделали дети, тогда они изготовили (х+5) штук фонариков, 3х штук снежинок. Всего было сделано (х+(х+5)+3х) штук украшений, а это – 135 штук украшений. Выражения ( х+(х+5)+3х) и 135 имеют один и тот же сюжетный смысл, значит, их можно приравнять. Требуется подчеркнуть, чту уравнивать можно только выражения, имеющие одинаковый сюжетный смысл. Получится уравнение:
х+(х+5)+3х=135. Обратить внимание, что в уравнении наименования не пишутся. Решим уравнение
х+х+5+3х=135
5х=135-5
5х=130
х=130:5
х=26.
.
Итак, 26 хлопушек сделали дети.
Предложить решить задачу арифметическим методом. Без вспомогательной модели это сделать трудно. Составим схематический чертеж.
Хл.
Ф. 5 ш. 135 ш.
Сн. .
Решение.
Все украшения можно разделить на 5 равных частей, если бы не было5 штук фонариков. Уберем их, при этом общее количество уменьшится на 5.
1) 135-5=130 (шт.) - украшений всего.
- 130:5=26 (шт.) – в одной части , т.е. столько хлопушек сделали дети.
В задачах с пропорциональными величинами желательно использовать таблицу не только для краткой записи содержания, но и для проведения рассуждений при составлении уравнения. Сначала в таблице записывается содержание задачи, а затем (желательно другим цветом) заполняются все пустые графы выражениями с переменной величиной.
Из двух городов, расстояние между которыми 1620 км вышли одновременно навстречу друг другу два поезда, скорость одного на 10 км/ч больше скорости другого и через 18 часов они встретились. Какова скорость каждого поезда?
Скорость | Время | Расстояние |
(х+10)км/ч На 10 км/ч больше | 18 ч | (х+10) ·18км
|
х км/ч | 18 ч | 18х км 1 620 км |
Пусть х км/ч – скорость одного поезда, тогда скорость другого - (х+10) км/ч. До встречи один прошел расстояние 18х км, а другой – (х+10)·18 км.
Вместе они прошли расстояние (18х+(х+10) ·18) км или 1620 км.
18х+(х+10) ·18=1620
18х+18х+180=1620
36х=1620-180
36х=1440
х=1440:36
х=40
Скорость одного поезда 40 км/ч, а другого50 км/ч.
Прим. Если х км/ч - большая скорость, то можно составить такое уравнение: 18х+(х-10) ·18=1620.
Мы рассмотрели некоторые виды текстовых задач, встречающиеся в учебнике математики для 5-х классов. Несмотря на кажущуюся простоту установления связи между алгебраическим и арифметическим методами, этот прием все же требует тщательной отработки с учащимися на практических занятиях и кропотливой работы учителя в ходе самоподготовки к уроку.
Список литературы
1. Математика. 5 класс: учеб. для общеобразоват. организаций/М34/ Г.В Дорофеев, И.Ф. Шарыгин. Рос акад. наук, Рос. акад. образования, изд-во «Просвещение». – 4-е изд. – М.: Просвещение, 2016.
2. Математика. Дидактические материала. 5 класс /М 34 / Г.В Дорофеев, Л.В. Кузнецова, С.С. Минаев, С.Б. Суворова/ Рос. акад. образования, изд-во «Просвещение». – 12-е изд. – М.: Просвещение, 2015.
- Захарова, А.Е. Как помочь школьникам преодолеть некоторые затруднения в овладении решением текстовых задач. А. Захарова / Сборник научных трудов математического факультета МГПУ. М.: МГПУ, 2005. - С. 119-124.
Предварительный просмотр:
РЕШЕНИЕ ТЕКСТОВЫХ ЗАДАЧ АЛГЕБРАИЧЕСКИМ МЕТОДОМ
Лиханова В.Е., учитель математики МБОУ «СОШ №12» г. Ноябрьск, ЯНАО
Наряду с арифметическим, практическим методами решения задач ученики 5 класса знакомятся и с алгебраическим методом. Многие ученики сначала не будут принимать новый метод, поэтому роль учителя на данном этапе должна заключаться в том, чтобы показать преимущества данного метода, но ни в коем случае не навязывать его. С этой целью необходимо предлагать задачи, которые арифметически решить трудно.
Особенностями алгебраического метода является введение переменной величины, что позволяет действовать с ней как с явной. Выполняется анализ основных зависимостей между явными и неявными значениями величин, производится моделирование условия задачи в виде уравнения. Если при выборе действий опираемся на сюжетные особенности, то такой метод решения называется алгебраическим. Следует отметить, что в учебнике «Математика 5» авторского коллектива: Г.В.Дорофеев, И.Ф. Шарыгин, Е.А. Бунимович, Л.В. Кузнецова существуют определенные недостатки по обучению решению задач алгебраическим методом. Самым главным из них является недостаточность системы упражнений, готовящих детей к усвоению данного метода, а именно на составление различных выражений по сюжету задач и выяснение их сюжетного смысла.
Необходимые базовые знания для решения задач алгебраическим методом:
- усвоение понятия переменной величины;
- умение решать простые и составные уравнения;
- умение составлять по тексту задачи простые и составные выражения и определять их сюжетный смысл;
- находить выражения с одинаковым сюжетным смыслом.
Основные этапы формирования умения решать задачи алгебраическим методом:
- Подготовительный.
- Этап ознакомления с алгоритмом рассуждения и записью решения задачи.
- Закрепление, выработка умения.
На первом этапе учитель должен познакомить учащихся с понятием «сюжетный смысл выражения», научить составлять всевозможные выражения по тексту задачи, определять их сюжетный смысл. Это можно сделать через следующую систему упражнений:
- Дать текст с числами. Составить по этому тексту несколько выражений, записать их смысл.
- Дать текст. Учитель составляет по этому тексту выражения, а ученики объясняют их смысл по тексту.
- Предложить задание, подобное предыдущему, но среди выражений должны быть такие, которые не имеют сюжетного смысла по данному тексту.
- По предложенному тексту с числами дети сами составляют выражения и определяют их смысл. В заключение находят выражения с одинаковым сюжетным смыслом.
- Дать задачу, показать способ обозначения величины, которую требуется найти в вопросе задачи через х, показать способ составления выражений по задаче с использованием этой неизвестной величины как с известной. Определить сюжетный смысл выражений по тексту задачи.
- По предложенному тексту учитель показывает сюжетный смысл одного из выражений. Детям предлагается составить выражение с тем же сюжетным смыслом.
У пруда росли липы, осины, березы и ели. Лип росло 12, осин – в 3 раза больше, чем лип, несколько елей, берез – на 5 меньше, чем елей. Составь различные выражения и объясни, что они обозначают.
Решение.
Учитель предлагает обозначить число елей буквой х, работать с ней как с обыкновенным числом. Можно составить следующие выражения:
12·3 – количество осин,
х-5 – количество берез,
12+х – количество лип и елей,
12+(х-5) – количество лип и берез,
12·3+(х-5)+х –общее количество осин, берез, елей.
Основная задача второго этапа – введение понятия «основание для составления уравнения», введение алгоритма рассуждения и развернутой формы записи решения задачи алгебраическим методом. Деятельность учителя может быть организована следующим образом.
- Дать текст задачи. Решить ее арифметическим методом.
- Предложить обозначить через х неизвестную величину, значение которой требуется найти.
- Составить ряд выражений по тексту и определить их сюжетный смысл.
- Найти выражения с одинаковым сюжетным смыслом. Сообщить детям, что если выражения имеют одинаковый смысл, то они равны.
- Составить равенство из двух выражений, в одно из которых входит переменная.
- Вместе с детьми определить, что данная запись является уравнением.
- Решить его и установить, что значение х и есть ответ.
- Сообщить учащимся, что сюжетный смысл выражений, которые мы использовали для составления уравнения, будем называть основанием для составления уравнения, а метод решения задачи – алгебраическим.
- Решить еще одну задачу таким же методом. Запомнить алгоритм рассуждений и полную форму записи решения задачи.
- Решив другую задачу, учитель предлагает проверить правильность решения задачи. Для этого необходимо вспомнить все известные способы проверки правильности решения, которые использовали ранее.
- Сообщить детям новый способ проверки. Для этого надо составить уравнение по другому основанию. Сделать вывод.
- Сопоставляя решения первой и второй задачи, учитель в процессе фронтальной беседы составляет алгоритм решения задачи алгебраическим методом.
Алгоритм решения задачи алгебраическим методом.
- Обозначить буквой неизвестную величину.
- Составить выражения.
- Выбрать основание.
- Составить уравнение.
- Решить уравнение.
6. Проверить правильность решения.
Знакомство с новым методом решения задачи можно начать:
- с простой задачи;
- сразу с составной.
В первом случае работа будет выполняться достаточно быстро, но учащиеся не увидят преимущества данного метода (ведь задача и так решена !).
Рассмотрим задачу. Ученики изготовили 135 елочных украшений, из них фонариков на 5 больше, чем хлопушек, а снежинок в 3 раза больше, чем снежинок. Сколько хлопушек изготовили дети?
Необходимо показать, что задача решается с помощью уравнения. Для этого надо ввести переменную величину. Обозначить буквой можно как число хлопушек, так и число фонариков, так и число снежинок (проще - число хлопушек). Составляем выражения с переменной.
Хлопушки- ? штук
Фонарики-?, на 5 штук больше 135 штук
Снежинки-?, в 3 раза больше
Пусть х штук хлопушек сделали дети, тогда они изготовили (х+5) штук фонариков, 3х штук снежинок. Всего было сделано (х+(х+5)+3х) штук украшений, а это – 135 штук украшений. Выражения ( х+(х+5)+3х) и 135 имеют один и тот же сюжетный смысл, значит, их можно приравнять. Требуется подчеркнуть, чту уравнивать можно только выражения, имеющие одинаковый сюжетный смысл. Получится уравнение:
х+(х+5)+3х=135. Обратить внимание, что в уравнении наименования не пишутся. Решим уравнение
х+х+5+3х=135
5х=135-5
5х=130
х=130:5
х=26.
.
Итак, 26 хлопушек сделали дети.
Предложить решить задачу арифметическим методом. Без вспомогательной модели это сделать трудно. Составим схематический чертеж.
Хл.
Ф. 5 ш. 135 ш.
Сн. .
Решение.
Все украшения можно разделить на 5 равных частей, если бы не было5 штук фонариков. Уберем их, при этом общее количество уменьшится на 5.
1) 135-5=130 (шт.) - украшений всего.
- 130:5=26 (шт.) – в одной части , т.е. столько хлопушек сделали дети.
В задачах с пропорциональными величинами желательно использовать таблицу не только для краткой записи содержания, но и для проведения рассуждений при составлении уравнения. Сначала в таблице записывается содержание задачи, а затем (желательно другим цветом) заполняются все пустые графы выражениями с переменной величиной.
Из двух городов, расстояние между которыми 1620 км вышли одновременно навстречу друг другу два поезда, скорость одного на 10 км/ч больше скорости другого и через 18 часов они встретились. Какова скорость каждого поезда?
Скорость | Время | Расстояние |
(х+10)км/ч На 10 км/ч больше | 18 ч | (х+10) ·18км
|
х км/ч | 18 ч | 18х км 1 620 км |
Пусть х км/ч – скорость одного поезда, тогда скорость другого - (х+10) км/ч. До встречи один прошел расстояние 18х км, а другой – (х+10)·18 км.
Вместе они прошли расстояние (18х+(х+10) ·18) км или 1620 км.
18х+(х+10) ·18=1620
18х+18х+180=1620
36х=1620-180
36х=1440
х=1440:36
х=40
Скорость одного поезда 40 км/ч, а другого50 км/ч.
Прим. Если х км/ч - большая скорость, то можно составить такое уравнение: 18х+(х-10) ·18=1620.
Мы рассмотрели некоторые виды текстовых задач, встречающиеся в учебнике математики для 5-х классов. Несмотря на кажущуюся простоту установления связи между алгебраическим и арифметическим методами, этот прием все же требует тщательной отработки с учащимися на практических занятиях и кропотливой работы учителя в ходе самоподготовки к уроку.
Список литературы
1. Математика. 5 класс: учеб. для общеобразоват. организаций/М34/ Г.В Дорофеев, И.Ф. Шарыгин. Рос акад. наук, Рос. акад. образования, изд-во «Просвещение». – 4-е изд. – М.: Просвещение, 2016.
2. Математика. Дидактические материала. 5 класс /М 34 / Г.В Дорофеев, Л.В. Кузнецова, С.С. Минаев, С.Б. Суворова/ Рос. акад. образования, изд-во «Просвещение». – 12-е изд. – М.: Просвещение, 2015.
- Захарова, А.Е. Как помочь школьникам преодолеть некоторые затруднения в овладении решением текстовых задач. А. Захарова / Сборник научных трудов математического факультета МГПУ. М.: МГПУ, 2005. - С. 119-124.
По теме: методические разработки, презентации и конспекты
Решение задач ЕГЭ методом графического поэтапного моделирования
Приведен пример разбора задач ЕГЭ...
Решение задач С2 методом координат
Существует два способа решения задач по стереометрии.Первый ,классический ,требует отличного знания аксиом и теорем стереомет-рии, логики, умения построить чертеж и свести объемную задачу к планиметри...
Решение задач алгебраическим и арифметическим способами
Самостоятельная работа для учащихся 5 класса. 2 варианта заданий. Задания компоновала из разных сборников....
Презентация к уроку "Угол между плоскостями.Решение задачи различными методами"
Данная презентация может использоваться для наглядности на уроках повторения, для подготовки к ЕГЭ при решении задач типа С-2....
«Разработка системы уроков повторения, направленных на подготовку к ЕГЭ по математике. Решение неравенств алгебраическим методом» 10 класс
Представленая работа,содержит разбор всех вариантов решения показательных неравенств алгебраическим методом.Рассматриваемый материал можно использовать как на уроках алгебры,так и при повторител...
урок в 5 классе"Решение задач алгебраическим способом"
это урок повторения,обобщения и систематизации знаний. в 5 классе начинаетсяподготовка к математическому моделированию, а этот урок одно из звеньев цепочки, он позволяет повторить знания по теме и обо...
Электронный образовательный ресурс на тему: "Решение задач алгебраическим способом"
Обучающая презентация на тему Решение задач алгебраическим способом...