Карта по решению задач на Смеси и сплавы.
тренажёр по алгебре (9 класс)

Карта по решению задач на Смеси и сплавы. 9-11 класс.

Скачать:

ВложениеРазмер
Microsoft Office document icon karta_uroka.doc106.5 КБ

Предварительный просмотр:

Инструкционная карта урока по теме:

«Решение задач на смеси и сплавы»

1. Установите соответствие между  процентом  и записью в виде дроби

5%

17%

123%

0,3%

25%

0,003

0,25

0,05

0,17

1,23

2. Основные понятия на уроке:

М – масса раствора

α – концентрация раствора


m – масса основного вещества растворе 

Долей (концентрацией, процентным содержанием) α основного вещества в смеси будем называть отношение массы основного вещества  m в смеси к общей массе смеси M:

 

3.  Табличный способ решения задач на смеси и сплавы

Таблица для решения задач имеет вид.

Наименование веществ, растворов, смесей, сплавов

% содержание вещества (доля содержания вещества)

Масса раствора (смеси, сплава)

Масса вещества

Задача №1. Имеется два сплава меди и свинца. Один сплав содержит 15% меди, а другой 65% меди. Сколько нужно взять каждого сплава, чтобы получилось 200г сплава, содержащего 30% меди?

Решение:

Наименование веществ, растворов, смесей, сплавов

% содержание меди (доля содержания вещества)

Масса раствора (смеси, сплава)

Масса вещества

Первый сплав

Второй сплав

Получившийся сплав

_____________________________________________________________________________________________________________________________________________________________________________________________________Ответ:__________

4. Решение задач с помощью модели-схемы

Задача №1. Имеется два сплава меди и свинца. Один сплав содержит 15% меди, а другой 65% меди. Сколько нужно взять каждого сплава, чтобы получилось 200г сплава, содержащего 30% меди?

Решение:

Рассмотрим решение этой же задачи с помощью следующей модели.  

  1. Над каждым прямоугольником («маленьким») указываем соответствующие компоненты сплава. Удобно сохранять порядок в обозначениях.
  2. Внутри прямоугольников вписываем процентное содержание (или часть) соответствующего компонента. Понятно, что если раствор состоит из двух компонентов, то достаточно указать процентное содержание одного из них. В этом случае процентное содержание второго компонента равно разности 100% и процентного содержания первого.
  3. Под прямоугольником записываем массу (или объем) соответствующего раствор (или компонента).

Решение:

___________________________________________________________________________________________________________________________________________________________________________________________________Ответ:_____________

5. Старинный способ решения задач на смеси и сплавы (диагональная схема, «метод рыбки») 

Задача №1. Имеется два сплава меди и свинца. Один сплав содержит 15% меди, а другой 65% меди. Сколько нужно взять каждого сплава, чтобы получилось 200г сплава, содержащего 30% меди?

Решение:

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________Ответ:____________

Теория метода.

М1 – масса первого раствора

α1 концентрация первого раствора

М2 – масса второго раствора

α2 концентрация второго раствора

М1+ М2 – масса конечного раствора

α3 - концентрация конечного раствора

α1 <α3 <α2

m1 = α1 М1  – масса основного вещества в первом растворе

m2 = α2 М2  – масса основного вещества во втором растворе

m3 = α3 (М12) – масса основного вещества в конечном растворе

с другой стороны m3 = m1+ m2, получаем


α3 (М12) = α1 М1  + α2 М2;

α3 М1  + α3 М2 = α1 М1  + α2 М2;

α3 М1  – α1 М1  = α2 М2 – α3 М2;

М1( α3 – α1) = М2( α2 – α3);


Задача №2 (смешивание двух веществ, предлагалась на экзамене в 2006 году).  Имеется два сплава с разным содержанием золота. В первом сплаве содержится 35%, а во втором 60% золота. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 40% золота?
Решение:

_________________________________________________________________________________________________________________________________________________________________________________________________Ответ:______________

Задача №3 (8.21 Сборник для подготовки к ГИА под ред. Л.В.Кузнецовой) Влажность свежих грибов 90%, а сухих 15%. Сколько граммов сухих грибов получится из 1,7 кг свежих?

__________________________________________________________________________________________________________________________________________________________________________________________________________________Ответ:_______________

Задача №4.  Имеется склянка 20%-го раствора кислоты и склянка 40%-го раствора кислоты. Смешали 200 г раствора из первой склянки и 300 г из второй. Определите массу кислоты и её концентрацию.

__________________________________________________________________________________________________________________________________________________________________________________________________________________Ответ:_______________

6. Дополнительные задачи.

Задача №5. Смешали некоторое количество 12% раствора соляной кислоты с таким же количеством 20 % раствора этой же кислоты. Найти концентрацию получившейся соляной кислоты.

Задача №6. В 4кг сплава меди и олова содержится 40% олова. Сколько килограммов олова надо добавить к этому сплаву, чтобы его процентное содержание в новом сплаве стало равным 70%?

Задача для самостоятельного решения
 (Сборник заданий для подготовки к государственной итоговой аттестации в 9 классе, 8.22).
Сколько граммов воды нужно добавить к 180 г сиропа, содержащего 25% сахара, чтобы получить сироп, концентрация которого равна 20%?

Первый способ:

Наименование веществ, растворов, смесей, сплавов

% содержание вещества (доля содержания вещества)

Масса раствора (смеси, сплава)

Масса вещества

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Второй способ:

______________________________________________________________________________________________________________________________________________________________________________________________________________Ответ:___________________

Третий способ:

__________________________________________________________________________________________________________________________________________________________________________________________________________________Ответ:_______________

Задача для самостоятельного решения
 (Сборник заданий для подготовки к государственной итоговой аттестации в 9 классе, 8.22).
Сколько граммов воды нужно добавить к 180 г сиропа, содержащего 25% сахара, чтобы получить сироп, концентрация которого равна 20%?

Первый способ:

Наименование веществ, растворов, смесей, сплавов

% содержание вещества (доля содержания вещества)

Масса раствора (смеси, сплава)

Масса вещества

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Второй способ:

______________________________________________________________________________________________________________________________________________________________________________________________________________Ответ:___________________

Третий способ:

__________________________________________________________________________________________________________________________________________________________________________________________________________________Ответ:_______________


По теме: методические разработки, презентации и конспекты

Конспект урока по теме: "Решение задач на смеси и сплавы"

Данную разработку можно использовать при подготовке к итоговой аттестации в 9 и 11 классах, а также на уроках алгебры по теме "Решение задач с помощью дробно-рациональных уравнений"...

Решение задач на смеси и сплавы

Бинарное занятие элективного курса...

Бинарный урок в 9 классе по теме "Решение задач на смеси и сплавы"

Бинарный урок математика-химия в 9 классе по теме "Решение задач на смеси и сплавы"....

Решение задач на смеси и сплавы в 9 классе

Подготовка к государственной  итоговой аттестации выпускников 9 классов по алгебре...

ГИА - 9. Модуль «Алгебра». Решение задач на смеси и сплавы. Тренировочная работа.

Текстовые задачи на смеси и сплавы включены в материалы итоговой аттестации за курс основной школы, в тесты ГИА в 9 классе и ЕГЭ в 11классе. Тренировочная работа  составлена по материалам «Открыт...

Решение задач на смеси и сплавы с помощью схем и таблиц

Методическая разработка для подготовки к итоговой аттестации выпускников 9 классов. В презентации представлены различные способы решения задач на смеси и сплавы....

Решение задач на смеси и сплавы

Занятие элективного курса по теме: «Решение текстовых задач на смеси и сплавы» в 9 классе....