Рабочая программа по учебному предмету «Алгебра»
рабочая программа по алгебре (7, 8, 9 класс)

Рабочая программа по  учебному предмету «Алгебра» составлена в соответствии с приказом Министерства образовании и науки РФ от 17 декабря 2010 года  № 1897 «Об утверждении Федерального государственного образовательного стандарта основного общего образования» (с изменениями и дополнениями).

 

Скачать:

ВложениеРазмер
Файл rabochaya_programma_algebra.docx125.85 КБ

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа № 7

имени Героя Советского Союза Петра Акимовича Рубанова»

                                                                                                                                                                       

РАССМОТРЕНА

на заседании ШМО

от  «  »            201  г.

 Протокол № 1                                                                                                        

УТВЕРЖДЕНА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  приказом  заместителя директора по УВР

от  «    » августа 201 г. №                                                                                                            

\

РАБОЧАЯ    ПРОГРАММА

 

по предмету «Алгебра»

(наименование учебного предмета, (курса), курса внеурочной деятельности)

                                                                   

основное общее образование

 (уровень образования, направленность)

                                                                   

                                                                   

                                                                                                                                   

                                                                 

Программа составлена   учителем

математики

                                                                                               (предмет)

Юрченко Жанной Александровной,

первая квалификационная категория

 ( Ф.И.О. квалификационная категория )

г. Черногорск

Рабочая программа по  учебному предмету «Алгебра» составлена в соответствии с приказом Министерства образовании и науки РФ от 17 декабря 2010 года  № 1897 «Об утверждении Федерального государственного образовательного стандарта основного общего образования» (с изменениями и дополнениями).

Планируемые результаты освоения учебного предмета

            На уровне основного общего образования в ходе освоения алгебраического содержания обеспечиваются условия для достижения учащимися следующих личностных, метапредметных и предметных  результатов.

Личностные результаты освоения основной образовательной программы:

1. Российская гражданская идентичность (патриотизм, уважение к Отечеству, к прошлому и настоящему многонационального народа России,  чувство ответственности и долга перед Родиной, идентификация себя в качестве гражданина России, субъективная значимость использования русского языка и языков народов России, осознание и ощущение личностной сопричастности судьбе российского народа). Осознание этнической принадлежности, знание истории, языка, культуры своего народа, своего края, основ культурного наследия народов России и человечества (идентичность человека с российской многонациональной культурой, сопричастность истории народов и государств, находившихся на территории современной России); интериоризация гуманистических, демократических и традиционных ценностей многонационального российского общества. Осознанное, уважительное и доброжелательное отношение к истории, культуре, религии, традициям, языкам, ценностям народов России и народов мира.

2. Готовность и способность учащихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.

3. Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам (способность к нравственному самосовершенствованию; веротерпимость, уважительное отношение к религиозным чувствам, взглядам людей или их отсутствию; знание основных норм морали, нравственных, духовных идеалов, хранимых в культурных традициях народов России, готовность на их основе к сознательному самоограничению в поступках, поведении, расточительном потребительстве; сформированность представлений об основах светской этики, культуры традиционных религий, их роли в развитии культуры и истории России и человечества, в становлении гражданского общества и российской государственности; понимание значения нравственности, веры и религии в жизни человека, семьи и общества). Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде. Осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи.

4. Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.

5. Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания (идентификация себя как полноправного субъекта общения, готовность к конструированию образа партнера по диалогу, готовность к конструированию образа допустимых способов диалога, готовность к конструированию процесса диалога как конвенционирования интересов, процедур, готовность и способность к ведению переговоров).

6. Освоенность социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах. Участие в школьном самоуправлении и общественной жизни в пределах возрастных компетенций с учетом региональных, этнокультурных, социальных и экономических особенностей (формирование готовности к участию в процессе упорядочения социальных связей и отношений, в которые включены и которые формируют сами учащиеся; включенность в непосредственное гражданское участие, готовность участвовать в жизнедеятельности подросткового общественного объединения, продуктивно взаимодействующего с социальной средой и социальными институтами; идентификация себя в качестве субъекта социальных преобразований, освоение компетентностей в сфере организаторской деятельности; интериоризация ценностей созидательного отношения к окружающей действительности, ценностей социального творчества, ценности продуктивной организации совместной деятельности, самореализации в группе и организации, ценности «другого» как равноправного партнера, формирование компетенций анализа, проектирования, организации деятельности, рефлексии изменений, способов взаимовыгодного сотрудничества, способов реализации собственного лидерского потенциала).

7. Сформированность ценности здорового и безопасного образа жизни; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах.

8. Развитость эстетического сознания через освоение художественного наследия народов России и мира, творческой деятельности эстетического характера (способность понимать художественные произведения, отражающие разные этнокультурные традиции; сформированность основ художественной культуры учащихся как части их общей духовной культуры, как особого способа познания жизни и средства организации общения; эстетическое, эмоционально-ценностное видение окружающего мира; способность к эмоционально-ценностному освоению мира, самовыражению и ориентации в художественном и нравственном пространстве культуры; уважение к истории культуры своего Отечества, выраженной в том числе в понимании красоты человека; потребность в общении с художественными произведениями, сформированность активного отношения к традициям художественной культуры как смысловой, эстетической и личностно-значимой ценности).

9. Сформированность основ экологической культуры, соответствующей современному уровню экологического мышления, наличие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях (готовность к исследованию природы, к занятиям сельскохозяйственным трудом, к художественно-эстетическому отражению природы, к занятиям туризмом, в том числе экотуризмом, к осуществлению природоохранной деятельности).

Метапредметные результаты освоения ООП

Метапредметные результаты включают освоенные учащимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные,        коммуникативные).

Межпредметные понятия

Условием формирования межпредметных понятий,  таких, как система, факт, закономерность, феномен, анализ, синтез является овладение учащимися основами читательской компетенции, приобретение навыков работы с информацией, участие  в проектной деятельности. В основной школе на всех предметах будет продолжена работа по формированию и развитию основ читательской компетенции. Учащиеся овладеют чтением как средством осуществления своих дальнейших планов: продолжения образования и самообразования, осознанного планирования своего актуального и перспективного круга чтения, в том числе досугового, подготовки к трудовой и социальной деятельности. У выпускников будет сформирована потребность в систематическом чтении как средстве познания мира и себя в этом мире, гармонизации отношений человека и общества, создании образа «потребного будущего».

При изучении учебных предметов Учащиеся усовершенствуют приобретенные на первом уровне навыки работы с информацией и пополнят их. Они смогут работать с текстами, преобразовывать и интерпретировать содержащуюся в них информацию, в том числе:

• систематизировать, сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах;

• выделять главную и избыточную информацию, выполнять смысловое свертывание выделенных фактов, мыслей; представлять информацию в сжатой словесной форме (в виде плана или тезисов) и в наглядно-символической форме (в виде таблиц, графических схем и диаграмм, карт понятий — концептуальных диаграмм, опорных конспектов);

• заполнять и дополнять таблицы, схемы, диаграммы, тексты.

В ходе изучения всех учебных предметов Учащиеся приобретут опыт проектной деятельности как особой формы учебной работы, способствующей воспитанию самостоятельности, инициативности, ответственности, повышению мотивации и эффективности учебной деятельности; в ходе реализации исходного замысла на практическом уровне овладеют умением выбирать адекватные стоящей задаче средства, принимать решения, в том числе и в ситуациях неопределенности. Они получат возможность развить способность к разработке нескольких вариантов решений, к поиску нестандартных решений, поиску и осуществлению наиболее приемлемого решения.

Перечень ключевых межпредметных понятий определяется в ходе разработки основной образовательной программы основного общего образования образовательной организации в зависимости от материально-технического оснащения, кадрового потенциала, используемых методов работы и образовательных технологий.

В соответствии ФГОС ООО выделяются три группы универсальных учебных действий: регулятивные, познавательные, коммуникативные.

Регулятивные УУД

  1. Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Учащийся сможет:
  • анализировать существующие и планировать будущие образовательные результаты;
  • идентифицировать собственные проблемы и определять главную проблему;
  • выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
  • ставить цель деятельности на основе определенной проблемы и существующих возможностей;
  • формулировать учебные задачи как шаги достижения поставленной цели деятельности;
  • обосновывать целевые ориентиры и приоритеты ссылками на ценности, указывая и обосновывая логическую последовательность шагов.
  1. Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Учащийся сможет:
  • определять необходимые действие(я) в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;
  • обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;
  • определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;
  • выстраивать жизненные планы на краткосрочное будущее (заявлять целевые ориентиры, ставить адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов);
  • выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;
  • составлять план решения проблемы (выполнения проекта, проведения исследования);
  • определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;
  • описывать свой опыт, оформляя его для передачи другим людям в виде технологии решения практических задач определенного класса;
  • планировать и корректировать свою индивидуальную образовательную траекторию.
  1. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Учащийся сможет:
  • определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;
  • систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;
  • отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
  • оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
  • находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;
  • работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;
  • устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности и по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик продукта;
  • сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.
  1. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения. Учащийся сможет:
  • определять критерии правильности (корректности) выполнения учебной задачи;
  • анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;
  • свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся средств, различая результат и способы действий;
  • оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;
  • обосновывать достижимость цели выбранным способом на основе оценки своих внутренних ресурсов и доступных внешних ресурсов;
  • фиксировать и анализировать динамику собственных образовательных результатов.
  1. Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной. Учащийся сможет:
  • наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других учащихся в процессе взаимопроверки;
  • соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;
  • принимать решение в учебной ситуации и нести за него ответственность;
  • самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
  • ретроспективно определять, какие действия по решению учебной задачи или параметры этих действий привели к получению имеющегося продукта учебной деятельности;
  • демонстрировать приемы регуляции психофизиологических/ эмоциональных состояний для достижения эффекта успокоения (устранения эмоциональной напряженности), эффекта восстановления (ослабления проявлений утомления), эффекта активизации (повышения психофизиологической реактивности).

Познавательные УУД

  1. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Учащийся сможет:
  • подбирать слова, соподчиненные ключевому слову, определяющие его признаки и свойства;
  • выстраивать логическую цепочку, состоящую из ключевого слова и соподчиненных ему слов;
  • выделять общий признак двух или нескольких предметов или явлений и объяснять их сходство;
  • объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
  • выделять явление из общего ряда других явлений;
  • определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;
  • строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;
  • строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки;
  • излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;
  • самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;
  • вербализовать эмоциональное впечатление, оказанное на него источником;
  • объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности (приводить объяснение с изменением формы представления; объяснять, детализируя или обобщая; объяснять с заданной точки зрения);
  • выявлять и называть причины события, явления, в том числе возможные / наиболее вероятные причины, возможные последствия заданной причины, самостоятельно осуществляя причинно-следственный анализ;
  • делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.
  1. Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Учащийся сможет:
  • обозначать символом и знаком предмет и/или явление;
  • определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;
  • создавать абстрактный или реальный образ предмета и/или явления;
  • строить модель/схему на основе условий задачи и/или способа ее решения;
  • создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;
  • преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;
  • переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое, и наоборот;
  • строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;
  • строить доказательство: прямое, косвенное, от противного;
  • анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) на основе предложенной проблемной ситуации, поставленной цели и/или заданных критериев оценки продукта/результата.
  1. Смысловое чтение. Учащийся сможет:
  • находить в тексте требуемую информацию (в соответствии с целями своей деятельности);
  • ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;
  • устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;
  • резюмировать главную идею текста;
  • преобразовывать текст, «переводя» его в другую модальность, интерпретировать текст (художественный и нехудожественный – учебный, научно-популярный, информационный, текст non-fiction);
  • критически оценивать содержание и форму текста.
  1. Формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации. Учащийся сможет:
  • определять свое отношение к природной среде;
  • анализировать влияние экологических факторов на среду обитания живых организмов;
  • проводить причинный и вероятностный анализ экологических ситуаций;
  • прогнозировать изменения ситуации при смене действия одного фактора на действие другого фактора;
  • распространять экологические знания и участвовать в практических делах по защите окружающей среды;
  • выражать свое отношение к природе через рисунки, сочинения, модели, проектные работы.

5. Развитие мотивации к овладению культурой активного использования словарей и других поисковых систем. Учащийся сможет:

  • определять необходимые ключевые поисковые слова и запросы;
  • осуществлять взаимодействие с электронными поисковыми системами, словарями;
  • формировать множественную выборку из поисковых источников для объективизации результатов поиска;
  • соотносить полученные результаты поиска со своей деятельностью.

Коммуникативные УУД

  1. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Учащийся сможет:
  • определять возможные роли в совместной деятельности;
  • играть определенную роль в совместной деятельности;
  • принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
  • определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;
  • строить позитивные отношения в процессе учебной и познавательной деятельности;
  • корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);
  • критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
  • предлагать альтернативное решение в конфликтной ситуации;
  • выделять общую точку зрения в дискуссии;
  • договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;
  • организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
  • устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.
  1. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Учащийся сможет:
  • определять задачу коммуникации и в соответствии с ней отбирать речевые средства;
  • отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);
  • представлять в устной или письменной форме развернутый план собственной деятельности;
  • соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей;
  • высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога;
  • принимать решение в ходе диалога и согласовывать его с собеседником;
  • создавать письменные «клишированные» и оригинальные тексты с использованием необходимых речевых средств;
  • использовать вербальные средства (средства логической связи) для выделения смысловых блоков своего выступления;
  • использовать невербальные средства или наглядные материалы, подготовленные/отобранные под руководством учителя;
  • делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.
  1. Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее – ИКТ). Учащийся сможет:
  • целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;
  • выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;
  • выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;
  • использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание писем, сочинений, докладов, рефератов, создание презентаций и др.;
  • использовать информацию с учетом этических и правовых норм;
  • создавать информационные ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности.

Предметные результаты

Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

Элементы теории множеств и математической логики

  • Оперировать на базовом уровне[1] понятиями: множество, элемент множества, подмножество, принадлежность;
  • задавать множества перечислением их элементов;
  • находить пересечение, объединение, подмножество в простейших ситуациях;
  • оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;
  • приводить примеры и контрпримеры для подтверждения своих высказываний.

В повседневной жизни и при изучении других предметов:

  • использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;
  • использовать свойства чисел и правила действий при выполнении вычислений;
  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;
  • выполнять округление рациональных чисел в соответствии с правилами;
  • оценивать значение квадратного корня из положительного целого числа;
  • распознавать рациональные и иррациональные числа;
  • сравнивать числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;
  • выполнять сравнение чисел в реальных ситуациях;
  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

  • Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;
  • выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;
  • использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;
  • выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.

В повседневной жизни и при изучении других предметов:

  • понимать смысл записи числа в стандартном виде;
  • оперировать на базовом уровне понятием «стандартная запись числа».

Уравнения и неравенства

  • Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;
  • проверять справедливость числовых равенств и неравенств;
  • решать линейные неравенства и несложные неравенства, сводящиеся к линейным;
  • решать системы несложных линейных уравнений, неравенств;
  • проверять, является ли данное число решением уравнения (неравенства);
  • решать квадратные уравнения по формуле корней квадратного уравнения;
  • изображать решения неравенств и их систем на числовой прямой.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.

Функции

  • Находить значение функции по заданному значению аргумента;
  • находить значение аргумента по заданному значению функции в несложных ситуациях;
  • определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости;
  • по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;
  • строить график линейной функции;
  • проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);
  • определять приближенные значения координат точки пересечения графиков функций;
  • оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
  • решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчетом без применения формул.

В повседневной жизни и при изучении других предметов:

  • использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);
  • использовать свойства линейной функции и ее график при решении задач из других учебных предметов.

Статистика и теория вероятностей

  • Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;
  • решать простейшие комбинаторные задачи методом прямого и организованного перебора;
  • представлять данные в виде таблиц, диаграмм, графиков;
  • читать информацию, представленную в виде таблицы, диаграммы, графика;
  • определять основные статистические характеристики числовых наборов;
  • оценивать вероятность события в простейших случаях;
  • иметь представление о роли закона больших чисел в массовых явлениях.

В повседневной жизни и при изучении других предметов:

  • оценивать количество возможных вариантов методом перебора;
  • иметь представление о роли практически достоверных и маловероятных событий;
  • сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;
  • оценивать вероятность реальных событий и явлений в несложных ситуациях.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;
  • строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;
  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
  • составлять план решения задачи;
  • выделять этапы решения задачи;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;
  • решать задачи на нахождение части числа и числа по его части;
  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
  • находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;
  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).

История математики

  • Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
  • понимать роль математики в развитии России.

Методы математики

  • Выбирать подходящий изученный метод для решения изученных типов математических задач;
  • Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.

Выпускник получит возможность научиться в 7-9 классах для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях

Элементы теории множеств и математической логики

  • Оперировать[2] понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;
  • изображать множества и отношение множеств с помощью кругов Эйлера;
  • определять принадлежность элемента множеству, объединению и пересечению множеств;
  • задавать множество с помощью перечисления элементов, словесного описания;
  • оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);
  • строить высказывания, отрицания высказываний.

В повседневной жизни и при изучении других предметов:

  • строить цепочки умозаключений на основе использования правил логики;
  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений.

Числа

  • Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
  • понимать и объяснять смысл позиционной записи натурального числа;
  • выполнять вычисления, в том числе с использованием приемов рациональных вычислений;
  • выполнять округление рациональных чисел с заданной точностью;
  • сравнивать рациональные и иррациональные числа;
  • представлять рациональное число в виде десятичной дроби
  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;
  • находить НОД и НОК чисел и использовать их при решении задач.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;
  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;
  • составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;
  • записывать и округлять числовые значения реальных величин с использованием разных систем измерения.

Тождественные преобразования

  • Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;
  • выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);
  • выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;
  • выделять квадрат суммы и разности одночленов;
  • раскладывать на множители квадратный   трехчлен;
  • выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;
  • выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;
  • выполнять преобразования выражений, содержащих квадратные корни;
  • выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;
  • выполнять преобразования выражений, содержащих модуль.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с числами, записанными в стандартном виде;
  • выполнять преобразования алгебраических выражений при решении задач других учебных предметов.

Уравнения и неравенства

  • Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);
  • решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;
  • решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;
  • решать дробно-линейные уравнения;
  • решать простейшие иррациональные уравнения вида , ;
  • решать уравнения вида ;
  • решать уравнения способом разложения на множители и замены переменной;
  • использовать метод интервалов для решения целых и дробно-рациональных неравенств;
  • решать линейные уравнения и неравенства с параметрами;
  • решать несложные квадратные уравнения с параметром;
  • решать несложные системы линейных уравнений с параметрами;
  • решать несложные уравнения в целых числах.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов;
  • выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;
  • выбирать соответствующие уравнения, неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи;
  • уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи.

Функции

  • Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, четность/нечетность функции;
  • строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: , ,, ;
  • на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций ;
  • составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;
  • исследовать функцию по ее графику;
  • находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;
  • оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
  • решать задачи на арифметическую и геометрическую прогрессию.

В повседневной жизни и при изучении других предметов:

  • иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;
  • использовать свойства и график квадратичной функции при решении задач из других учебных предметов.

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;
  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;
  • различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;
  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);
  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;
  • выделять этапы решения задачи и содержание каждого этапа;
  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
  • анализировать затруднения при решении задач;
  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;
  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;
  • решать разнообразные задачи «на части»,
  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
  • владеть основными методами решения задач на смеси, сплавы, концентрации;
  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
  • решать несложные задачи по математической статистике;
  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;
  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
  • решать задачи на движение по реке, рассматривая разные системы отсчета.

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;
  • извлекать информацию, представленную в таблицах, на диаграммах, графиках;
  • составлять таблицы, строить диаграммы и графики на основе данных;
  • оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;
  • применять правило произведения при решении комбинаторных задач;
  • оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями;
  • представлять информацию с помощью кругов Эйлера;
  • решать задачи на вычисление вероятности с подсчетом количества вариантов с помощью комбинаторики.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;
  • определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;
  • оценивать вероятность реальных событий и явлений.

История математики

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;
  • понимать роль математики в развитии России.

Методы математики

  • Используя изученные методы, проводить доказательство, выполнять опровержение;
  • выбирать изученные методы и их комбинации для решения математических задач;
  • использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;
  • применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.

Выпускник получит возможность научиться в 7-9 классах для успешного продолжения образования на углубленном уровне

Элементы теории множеств и математической логики

  • Свободно оперировать[3] понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств, способы задание множества;
  • задавать множества разными способами;
  • проверять выполнение характеристического свойства множества;
  • свободно оперировать понятиями: высказывание, истинность и ложность высказывания, сложные и простые высказывания, отрицание высказываний; истинность и ложность утверждения и его отрицания, операции над высказываниями: и, или, не; условные высказывания (импликации);
  • строить высказывания с использованием законов алгебры высказываний.

В повседневной жизни и при изучении других предметов:

  • строить рассуждения на основе использования правил логики;
  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа

  • Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
  • понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;
  • переводить числа из одной системы записи (системы счисления) в другую;
  • доказывать и использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11 суммы и произведения чисел при выполнении вычислений и решении задач;
  • выполнять округление рациональных и иррациональных чисел с заданной точностью;
  • сравнивать действительные числа разными способами;
  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;
  • находить НОД и НОК чисел разными способами и использовать их при решении задач;
  • выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней.

В повседневной жизни и при изучении других предметов:

  • выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;
  • записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;
  • составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

  • Свободно оперировать понятиями степени с целым и дробным показателем;
  • выполнять доказательство свойств степени с целыми и дробными показателями;
  • оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена;
  • свободно владеть приемами преобразования целых и дробно-рациональных выражений;
  • выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приемов;
  • использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трехчлена и для решения задач, в том числе задач с параметрами на основе квадратного трехчлена;
  • выполнять деление многочлена на многочлен с остатком;
  • доказывать свойства квадратных корней и корней степени n;
  • выполнять преобразования выражений, содержащих квадратные корни, корни степени n;
  • свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;
  • выполнять различные преобразования выражений, содержащих модули.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;
  • выполнять преобразования рациональных выражений при решении задач других учебных предметов;
  • выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей.

Уравнения и неравенства

  • Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;
  • решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;
  • знать теорему Виета для уравнений степени выше второй;
  • понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;
  • владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;
  • использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;
  • решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;
  • владеть разными методами доказательства неравенств;
  • решать уравнения в целых числах;
  • изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами.

В повседневной жизни и при изучении других предметов:

  • составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;
  • выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;
  • составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;
  • составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты.

Функции

  • Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, четность/нечетность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,
  • строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, ;
  • использовать преобразования графика функции  для построения графиков функций ;
  • анализировать свойства функций и вид графика в зависимости от параметров;
  • свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;
  • использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость;
  • исследовать последовательности, заданные рекуррентно;
  • решать комбинированные задачи на арифметическую и геометрическую прогрессии.

В повседневной жизни и при изучении других предметов:

  • конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;
  • использовать графики зависимостей для исследования реальных процессов и явлений;
  • конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета.

Статистика и теория вероятностей

  • Свободно оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;
  • выбирать наиболее удобный способ представления информации, адекватный ее свойствам и целям анализа;
  • вычислять числовые характеристики выборки;
  • свободно оперировать понятиями: факториал числа, перестановки, сочетания и размещения, треугольник Паскаля;
  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;
  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;
  • знать примеры случайных величин, и вычислять их статистические характеристики;
  • использовать формулы комбинаторики при решении комбинаторных задач;
  • решать задачи на вычисление вероятности в том числе с использованием формул.

В повседневной жизни и при изучении других предметов:

  • представлять информацию о реальных процессах и явлениях способом, адекватным ее свойствам и цели исследования;
  • анализировать и сравнивать статистические характеристики выборок, полученных в процессе решения прикладной задачи, изучения реального явления, решения задачи из других учебных предметов;
  • оценивать вероятность реальных событий и явлений в различных ситуациях.

Текстовые задачи

  • Решать простые и сложные задачи, а также задачи повышенной трудности и выделять их математическую основу;
  • распознавать разные виды и типы задач;
  • использовать разные краткие записи как модели текстов сложных задач и задач повышенной сложности для построения поисковой схемы и решения задач, выбирать оптимальную для рассматриваемой в задаче ситуации модель текста задачи;
  • различать модель текста и модель решения задачи, конструировать к одной модели решения сложных задач разные модели текста задачи;
  • знать и применять три способа поиска решения задач (от требования к условию и от условия к требованию, комбинированный);
  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;
  • выделять этапы решения задачи и содержание каждого этапа;
  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
  • анализировать затруднения при решении задач;
  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • изменять условие задач (количественные или качественные данные), исследовать измененное преобразованное;
  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях, конструировать новые ситуации на основе изменения условий задачи при движении по реке;
  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;
  • решать разнообразные задачи «на части»;
  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
  • объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
  • владеть основными методами решения задач на смеси, сплавы, концентрации, использовать их в новых ситуациях по отношению к изученным в процессе обучения;
  •  решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
  • решать несложные задачи по математической статистике;
  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • конструировать новые для данной задачи задачные ситуации с учетом реальных характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
  • решать задачи на движение по реке, рассматривая разные системы отсчета;
  • конструировать задачные ситуации, приближенные к реальной действительности.

История математики

  • рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России.

Методы математики

  • Владеть знаниями о различных методах обоснования и опровержения математических утверждений и самостоятельно применять их;
  • владеть навыками анализа условия задачи и определения подходящих для решения задач изученных методов или их комбинаций;
  • характеризовать произведения искусства с учетом математических закономерностей в природе, использовать математические закономерности в самостоятельном творчестве.

Содержание учебного предмета «Алгебра»

АРИФМЕТИКА

        Рациональные числа.

Расширение множества натуральных чисел до множества целых. Множества целых чисел до множества рациональных. Рациональное число как отношение m/n, где m — целое число, n — натуральное. Степень с целым показателем.

        Действительные числа.

Квадратный корень из числа. Корень третьей степени. Запись корней с помощью степени с дробным показателем. Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел. Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел. Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки.

Измерения, приближения, оценки.

Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя — степени десяти в записи числа. Приближённое значение величины, точность приближения. Прикидка и оценка результатов вычислений.

АЛГЕБРА

Алгебраические выражения.

Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество. Степень с натуральным показателем и её свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трёхчлен; разложение квадратного трёхчлена на множители. Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и её свойства. Рациональные выражения и их преобразования. Доказательство тождеств. Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям.

Уравнения.

Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвёртой степеней. Решение дробно-рациональных уравнений. Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах. Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Примеры решения систем нелинейных уравнений с двумя переменными. Решение текстовых задач алгебраическим способом. Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными.

        Неравенства. Числовые неравенства и их свойства.

Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.

ФУНКЦИИ

Основные понятия.

Зависимости между величинами. Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.

Числовые функции.

Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, её график и свойства. Квадратичная функция, её график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций ,, . Числовые последовательности. Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.

Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n-х членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

ВЕРОЯТНОСТЬ И СТАТИСТИКА

Описательная статистика.

Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании.

        Случайные события и вероятность.

Понятие о случай-ном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Независимые события. Умножение вероятностей. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности. Комбинаторика. Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.

ЛОГИКА И МНОЖЕСТВА

Теоретико-множественные понятия.

Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна. Элементы логики. Понятие о равносильности, следовании, употребление логических связок если ..., то ..., в том и толь-ко в том случае, логические связки и, или.

МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ

История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и  нуля.  Л. Магницкий. Л. Эйлер.

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, боль-шей четырёх. Н. Тарталья, Дж. Кардано, Н. X. Абель, Э. Галуа.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Фе-ма. Примеры различных систем координат на плоскости.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.

Истоки теории вероятностей: страховое дело, азартные игры.  П. Ферма  и  Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.

Тематическое планирование

7 класс

№ п/п

Раздел/ тема урока

Кол-во часов

Повторение

5

1

Действия с рациональными числами.

2

2

3

Повторение. Упрощение выражений.

1

4

Повторение. Решение уравнений.

1

5

Повторение. Проценты.

1

Выражения, тождества, уравнения

20

6

Числовые выражения.

2

7

8

Выражения с переменными.

2

9

10

Сравнение значений выражений.

2

11

12

Свойства действий над числами.

2

13

14

Тождество. Тождественные преобразования выражений

2

15

16

Контрольная работа № 1 "Повторение материала 6 класса"

1

17

Уравнение и его корни.

1

18

Линейное уравнение с одной переменной.

3

19

20

21

Решение задач с помощью уравнений.

4

22

23

24

25

Контрольная работа № 2 "Выражения, тождества, уравнения".

1

Функции

16-17

26

Что такое функция.

1

27

Вычисление значений функции по формуле.

2

28

29

График функции.

2

30

31

Прямая пропорциональность и её график.

3

32

33

34

Линейная функция и её график.

4-5

35

36

37

38

Задание функции несколькими формулами

3

39

40

41

Контрольная работа №2 "Линейная функция".

1

Степень с натуральным показателем

14

42

Определение степени с натуральным показателем.

3

43

44

45

Умножение и деление степеней.

2

46

47

Возведение в степень произведения и степени.

3

48

49

50

Одночлен и его стандартный вид.

1

51

Умножение одночленов. Возведение одночлена в степень.

2

52

53

Функции у = х  и у = х  и их графики.

3

54

55

Многочлены

18-19

56

Многочлен и его стандартный вид.

1

57

Сложение и вычитание многочленов.

2

58

59

Умножение одночлена на многочлен.

3

60

61

62

Вынесение общего множителя за скобки.

3-4

63

64

65

Умножение многочлена на многочлен.

5

66

67

68

69

70

Разложение многочлена на множители способом группировки.

3

71

72

73

Контрольная работа №3 "Многочлены".

1

Формулы сокращенного умножения

20-21

74

Возведение в квадрат суммы и разности двух выражений.

3

75

76

77

Разложение на множители с помощью формул квадрата суммы и квадрата разности.

2

78

79

Умножение разности двух выражений на их сумму.

3

80

81

82

Разложение разности квадратов на множители.

2

83

84

Разложение на множители суммы и разности кубов.

2

85

86

Преобразование целого выражения в многочлен.

4

87

88

89

90

Применение различных способов для разложения на множители.

3-4

91

92

93

Контрольная работа №4 "Преобразование целых выражений".

1

Системы линейных уравнений

20-21

94

Линейное уравнение с двумя переменными.

1

95

График линейного уравнения с двумя переменными.

2

96

97

Системы линейных уравнений с двумя переменными.

2

98

99

Способ подстановки.

4

100

101

102

103

Способ сложения.

3

104

105

106

Решение задач с помощью систем уравнений.

4

107

108

109

110

Линейные уравнения и их системы.

3-4

111

112

113

Контрольная работа №5 "Системы линейных уравнений"

1

Статистические характеристики

4

114

Среднее статистическое, размах и мода.  

2

115

116

Медиана как статистическая характеристика.  

2

117

Повторение

19

118

Решение уравнений.

1

119

Решение систем уравнений.

2

120

121

Решение задач с помощью уравнений.

1

122

Решение задач с помощью систем уравнений.

2

123

124

Итоговая контрольная работа № 6

1

125

Степень. Свойства степени. Выполнение заданий ОГЭ.

2

126

127

Линейная функция и её график. Выполнение заданий ОГЭ.

2

128

129

Решение уравнений.

2

130

131

Решение систем уравнений.

2

132

133

Решение задач с помощью уравнений.

1

134

Решение задач с помощью систем уравнений.

1

135

Преобразование целых выражений.

1

136

Разложение многочлена на множители.

1

 

Итого:

136-140

8 класс

№ п/п

Раздел/ тема урока

Кол-во часов

Повторение

3

1

Формулы сокращённого умножения.

1

2

Степень. Свойства степени.

1

3

Преобразование целых выражений.

1

Рациональные дроби и их свойства

24-25

4

Рациональные выражения.

2

5

6

Основное свойство дроби. Сокращение дробей.

3

7

8

9

Сложение и вычитание дробей с одинаковыми знаменателями.

2

10

11

Сложение и вычитание дробей с разными знаменателями.

4-5

12

13

14

15

Контрольная работа № 1 "Повторение материала 7 класса"

1

16

Умножение дробей. Возведение дроби в степень .

2

17

18

Деление дробей.

2

19

20

Преобразование рациональных выражений.

4

21

22

23

24

Функция у=к/х и её график

3

25

26

27

Контрольная работа № 2 "Преобразование рациональных выражений".

1

Квадратные корни.

20

28

Рациональные и иррациональные числа.

1

29

Квадратные корни. Арифметический квадратный корень.

2

30

31

Уравнение х2

2

32

33

Нахождение приближенных значений квадратного корня

1

34

Функция    и ее график

2

35

36

Квадратный корень из произведения,  дроби и степени.

3

37

38

39

Вынесение множителя из-под знака корня.

1

40

Внесение множителя под знак корня.

1

41

Вынесение множителя из-под знака корня. Внесение множителя под знак корня.

2

42

43

Преобразование выражений, содержащих квадратные корни.

3

44

45

46

Преобразование выражений, содержащих квадратные корни. Выполнение заданий ОГЭ.

2

47

Квадратные уравнения.

23-24

48

Определение квадратного уравнения. Неполные квадратные уравнения.

2-3

49

50

Решение квадратных уравнений по формуле.

5

51

52

53

54

55

Решение задач с помощью квадратных уравнений.  

4

56

57

58

59

Теорема Виета.

2

60

61

Решение дробных рациональных уравнений.

4

62

63

64

65

Решение задач с помощью рациональных уравнений.  

5

66

67

68

69

70

Контрольная работа № 3 "Решение рациональных уравнений."

1

Неравенства.

17-18

71

Числовые неравенства. Свойства числовых неравенств.

3

72

73

74

Сложение и умножение числовых неравенств.

3

75

76

77

Числовые промежутки.

2

78

79

Решение неравенств с одной переменной.

4

80

81

82

83

Решение систем неравенств с одной переменной.

4-5

84

85

86

87

Контрольная работа № 4 "Неравенства".

1

Степень с целым показателем. Элементы статистики.

14-15

88

Определение степени с целым отрицательным показателем.

3

89

90

91

Свойства степени с целым показателем.

2

92

93

Свойства степени с целым показателем.  Выполнение заданий ОГЭ.

2

94

95

Стандартный вид числа.  

3

96

97

98

Стандартный вид числа.  Выполнение заданий ОГЭ.

2

99

100

Сбор и группировка статистических данных.  

1

101

Наглядное представление статистической информации.  

1

Повторение.

35

102

Нахождение значений числовых выражений.

2

103

104

Преобразование рациональных выражений.

2

105

106

Решение линейных уравнений.

1

107

Решение квадратных уравнений.

1

108

Решение дробных рациональных уравнений.

1

109

Решение задач с помощью уравнений.

1

110

Решение задач на проценты.

2

111

112

Решение линейных неравенств с одной переменной и их систем .

1

113

Решение квадратных неравенств с одной переменной и их систем .

1

114

Свойства степени с целым показателем.

1

115

Преобразование выражений, содержащих квадратные корни.

1

116

Функции и их графики.

1

117

Чтение графиков и диаграмм.

1

118

Формулы.

1

119

Итоговая контрольная работа № 5 в форме ОГЭ.

1

120

Формулы.

1

121

Нахождение вероятности случайных событий.

1

122

Нахождение значений числовых выражений.

2

123

124

Преобразование рациональных выражений.

2

125

126

Решение линейных уравнений.

1

127

Решение квадратных уравнений.

1

128

Решение дробных рациональных уравнений.

1

129

Решение задач на проценты.

1

130

Решение линейных неравенств с одной переменной и их систем.

1

131

Решение квадратных неравенств с одной переменной и их систем.

1

132

Свойства степени с целым показателем.

1

133

Преобразование выражений, содержащих квадратные корни.

1

134

Функции и их графики.

2

135

136

Чтение графиков и диаграмм.

1

 

Итого:

136-140

9 класс

№ п/п

Раздел/ тема урока

Кол-во часов

Вводное повторение материала, изученного в 8 классе

6

1

Повторение. Квадратные уравнения.

1

2

Повторение. Дробно-рациональные выражения.

1

3

Повторение. Решение дробно-рациональных уравнений.

1

4

Повторение. Функции и их графики.

1

5

Повторение. Неравенства, системы неравенств.

1

6

Повторение. Степень.

1

Квадратичная функция.

25

7

Функция. Область определения и область значений функции.

4

8

9

10

11

Свойства функций.

4

12

13

14

15

Квадратный трехчлен и его корни.

2

16

17

Разложение квадратного трехчлена на множители.

2

18

19

График функции   у=ах2

2

20

21

Графики функций   у=ах2+n    и у=а(х - m)2 

2

22

23

Построение графика квадратичной функции

4

24

25

26

27

Степенная функция.

2

28

29

Диагностическая работа № 1 в форме ОГЭ

1

30

Определение корня n-ой степени.

2

31

Уравнения и неравенства с одной переменной.

15-16

32

Целое уравнение и его корни.

2

33

34

Уравнения, приводимые к квадратным.

3

35

36

37

Дробные рациональные уравнения

2-3

38

39

40

Решение неравенств второй степени с одной переменной.

4

41

42

43

44

Решение неравенств методом интервалов.

4

45

46

47

Уравнения и неравенства с двумя переменными.

21

48

Уравнения с двумя переменными и его график

2

49

50

Графический способ решения систем уравнений.

3

51

52

53

Решение систем уравнений второй степени.

6

54

55

56

57

58

59

Диагностическая работа № 2 в форме ОГЭ

1

60

Решение задач с помощью систем уравнений второй степени.

4

61

62

63

64

Неравенства с двумя переменными.

2

65

66

Системы неравенств с двумя переменными.

2

67

68

Повторение и систематизация учебного материала по теме "Уравнения и неравенства с двумя переменными."

1

Арифметическая и геометрическая последовательности.

17-18

69

Последовательности.

1

70

Определение арифметической прогрессии.

1

71

Формула n-го члена арифметической прогрессии.

3

72

73

74

 Формула суммы n первых членов арифметической прогрессии.

4

75

76

77

78

Повторение и систематизация учебного материала по теме "Арифметическая прогрессия"

1

79

Определение геометрической прогрессии.

1

80

Формула n-го члена  геометрической прогрессии.

2

81

82

 Формула суммы n первых членов геометрической прогрессии.

3-4

83

84

85

86

Повторение и систематизация учебного материала по теме "Геометрическая прогрессия"

1

Элементы комбинаторики и теории вероятностей.

9

87

Примеры комбинаторных задач.

1

88

Перестановки.

1

89

 Размещения.

2

90

91

Сочетания.

2

92

93

Вероятность случайного события.

1

94

Вероятность случайного события.  Выполнение заданий ОГЭ.

1

95

1

Повторение

39-41

96

Формулы.   Выполнение заданий ОГЭ.

1

97

Преобразование рациональных выражений.

2

98

99

Преобразование выражений, содержащих квадратные корни. Выполнение заданий ОГЭ.

1

100

Диагностическая работа № 3 в форме ОГЭ

1

101

Использование координатной прямой для сравнения величин.

1

102

Функции и их графики.  Выполнение заданий ОГЭ.

1

103

Решение неравенств и систем неравенств с одной переменной.

1

104

Решение неравенств второй степени с одной переменной.

1

105

Графики.   Выполнение заданий ОГЭ.

1

106

Стандартный вид числа.  Выполнение заданий ОГЭ.

1

107

Решение задач на части и проценты.  Выполнение заданий ОГЭ.

1

108

Свойства степени с целым показателем.  Выполнение заданий ОГЭ.

1

109

Таблицы. Диаграммы. Выполнение заданий ОГЭ.

1

110

Арифметическая и геометрическая прогрессии.

1

111

Формулы.   Выполнение заданий ОГЭ.

1

112

Преобразование выражений, содержащих знак корня.  Выполнение заданий ОГЭ.

1

113

Нахождение значений числовых выражений.  Выполнение заданий ОГЭ.

2

114

115

Арифметическая и геометрическая прогрессии.  Выполнение заданий ОГЭ.

2

116

117

Диагностическая работа № 4 в форме ОГЭ

1

118

Использование координатной прямой для сравнения величин.  Выполнение заданий ОГЭ.

1

119

Преобразование рациональных выражений.  Выполнение заданий ОГЭ.

2

120

121

Решение линейных уравнений.  Выполнение заданий ОГЭ.

1

122

Решение квадратных уравнений.  Выполнение заданий ОГЭ.

1

123

Решение линейных неравенств с одной переменной и их систем. Выполнение заданий ОГЭ.

1-2

124

125

Решение квадратных неравенств с одной переменной и их систем. Выполнение заданий ОГЭ.

2

126

127

Свойства степени с целым показателем.  Выполнение заданий ОГЭ.

1

128

Стандартный вид числа.  Выполнение заданий ОГЭ.

1

129

Преобразование выражений, содержащих квадратные корни. Выполнение заданий ОГЭ.

1

130

Графики. Диаграммы. Выполнение заданий ОГЭ.

1

131

Таблицы.  Выполнение заданий ОГЭ.

1

132

Решение задач на части и проценты  Выполнение заданий ОГЭ.

2

133

134

Вероятность случайного события.  Выполнение заданий ОГЭ.

1

135

Функции и их графики.  Выполнение заданий ОГЭ.

1-2

136

Итого

132-136


[1] Здесь и далее – распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.

[2] Здесь и далее – знать определение понятия, уметь пояснять его смысл, уметь использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.

[3] Здесь и далее – знать определение понятия, знать и уметь доказывать свойства (признаки, если они есть) понятия, характеризовать связи с другими понятиями, представляя одно понятие как часть целостного комплекса, использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.


По теме: методические разработки, презентации и конспекты

Рабочая программа по предмету Алгебра" 9 класс на 2011-2012 учебный год

Вид реализуемой рабочей программы по алгебре в 9 классе –  основная общеобразовательная. По данной программе  обучение осуществляется  на всех уроках и обеспечивает усвоение учебн...

Рабочая программа учебного предмета «АЛГЕБРА» 8 класс

Рабочая программа учебного предмета «АЛГЕБРА» 8 класс ...

Рабочая программа по предмету «Алгебра» (8 класс) ( по программе Ю. Н. Макарычева)

Рабочая программа по предмету "Алгебра", 8 класс( по программе Ю.Н. Макарычева). ;4 часа в неделю.Поурочное планирование....

Рабочая программа учебного предмета алгебра УМК «Алимов Ш.А. и др. «Алгебра 7 класс»

Рабочая программа учебного предмета УМК «Алимов Ш.А. и др. «Алгебра 7 класс»...

РАБОЧАЯ ПРОГРАММА ПО ПРЕДМЕТУ «Алгебра» 10 класс(Изучение алгебры и начал анализа проводится по учебникам «Алгебра и начала математического анализа 10-11 классы», базовый уровень, Алимов А.Ш, Колягин Ю.М. и др.: Просвещение, 2017)

Данная рабочая  программа учебного курса 10 класса разработана на основе примерной программы среднего (полного) общего образования по математике в соответствии с федеральным компонентом государст...

Рабочая программа по предмету «Алгебра» ( компонент основной образовательной программы ООО) 7-9 классы ФГОС ООО

Предмет «Алгебра» относится к предметной области «Математика и информатика». Основная часть учебного плана  на изучение алгебры в 7-9 классах отводит 3 учебных часа в неде...

Рабочая программа по предмету «Алгебра» ( компонент основной образовательной программы ООО) 7-9 классы ФГОС ООО

Предмет «Алгебра» относится к предметной области «Математика и информатика». Основная часть учебного плана  на изучение алгебры в 7-9 классах отводит 3 учебных часа в неде...