План-конспект по теме "Уравнение касательной"
план-конспект урока по алгебре (10 класс) на тему

Колесникова Ольга Евгеньевна

План-конспект урока 

Скачать:

ВложениеРазмер
Файл plan-konspekt_uroka_na_temu_uranenie_kasatelnoy.docx90.35 КБ

Предварительный просмотр:

Подробный конспект урока.

Разработал учитель математики Колесникова Ольга Евгеньевна

Организационная информация

Тема урока

«Касательная. Уравнение касательной»

Предмет

Алгебра и начала анализа

Класс

10

Методическая информация

Тип урока (мероприятия, занятия)

Изучение нового материала

Цели урока (мероприятия, занятия)

(образовательные, развивающие, воспитательные)

  • Уточнить понятие «касательной».
  • Вывести уравнение касательной.
  • Составить алгоритм «составления уравнения касательной к графику функции

у = f (x)».

  • Начать отрабатывать умения и навыки в составлении уравнения касательной в различных математических ситуациях.

Задачи урока (мероприятия, занятия)

  • Отработать  умения и навыки  по применению производной;
  • Расширять кругозор; развивать математическую речь, внимание, скорость, память, логическое мышление.
  • Развивать умения анализировать, обобщать, показывать, использовать элементы исследования.
  • Развивать  навыки  исследовательской работы.

Используемые педагогические технологии,  методы и приемы

Технология развивающего обучения, проблемный метод, контроля и взаимоконтроля, мозговой штурм.

Время реализации урока (мероприятия, занятия)

45 минут, школьный урок

Дидактическое обеспечение урока (мероприятия, занятия)

Карточки с памяткой, карточки для рефлексии.

Ход и содержание урока (мероприятия, занятия),

деятельность учителя и учеников.

  1. Мотивация учащихся

Тема сегодняшнего урока: «Уравнение касательной к графику функции».  Откройте тетради, запишите  число и тему урока. (Слайд

Внимание на экран.  Решение запишите в тетрадь.

2. Повторение изученного материала  

(слайд 3).Цель:  проверить знание основных правил дифференцирования.

Найти производную функции:

  1. у =2х10
  2. у=4
  3. у=7х+4
  4. у = tg x +
  5. у = х3sin x
  6. у =

Поменяйтесь тетрадью с соседом, оцените работу. Тест проверяют сами учащимися (слайд3 ).

У кого не одной ошибки? У кого одна?

3. Актуализация

Цель: Активизировать внимание, показать недостаточность знаний о касательной, сформулировать цели и задачи урока. (Слайд 4) 

Давайте обсудим, что такое касательная к графику функции?

Согласны ли вы с утверждением, что «Касательная – это прямая, имеющая с данной кривой одну общую точку»?
Давайте рассмотрим конкретные примеры:

Примеры. (слайд 5)
1) Прямая x = 1 имеет с параболой y = x
2 одну общую точку M(1; 1), однако не является касательной к параболе.

Прямая же y = 2x – 1, проходящая через ту же точку, является касательной к данной параболе.

Прямая x = π не является касательной к графику y = cos x, хотя имеет с ним единственную общую точку K(π; 1). С другой стороны, прямая y = - 1, проходящая через ту же точку, является касательной к графику, хотя имеет с ним бесконечно много общих точек вида  (π+2 πk; 1), где k – целое число, в каждой из которых она касается графика.

4.  Постановка цели и задачи перед детьми на уроке:

Попробуйте сами сформулировать цель урока.

Выяснить, что такое касательная к графику функции в точке, вывести  уравнение касательной. Применять формулу при решении задач

5. Изучение нового материала

Посмотрите, чем отличается положение прямой х=1 от положения у=2х-1? (слайд 7)

Сделайте вывод, что же такое касательная?

Примем за определение: касательная это предельное положение секущей.

Раз касательная это прямая линия, а нам нужно составить уравнение касательной, то что, как вы думаете, нам нужно вспомнить?

 Вспомнить общий вид уравнения прямой.( у= кх+b)

Как еще называют число к?  (угловой коэффициент или тангенс угла между этой прямой и положительным направлением оси Ох)   к =  tg α

В чем заключается геометрический смысл производной?

Тангенс угла наклона между  касательной  и положительным направлением оси оХ

Т. Е. я могу записать tg α = yˈ(а). (слайд 8)

Давайте проиллюстрируем это на чертеже. (слайд  9)

Пусть дана функция y = f (x) и точка М принадлежащая графику этой функции. Давайте определим её координаты следующим образом: х=а, у= f (а), т.е. М (а, f (а) ) и пусть существует производная f '(а), т.е. в данной точке производная определена. Проведем через точку М касательную.  Уравнение касательной – это уравнение прямой, поэтому оно имеет вид: y = kx + b. Следовательно, задача состоит в том, чтобы отыскать k и b. Обратите внимание на доску, из того что там записано, можно ли найти к? ( да, k = f '(а).)

Как теперь найти b?  Искомая прямая походит через точку М(а; f(a)), подставим эти координаты в уравнение прямой: f(a) = ka +b , отсюда b = f(a) – ka,  т. к. к =  tg α= yˈ(x), то b = f(a) – f '(а)а

Подставим значение b и к в уравнение y = kx + b.

y = f '(а)x + f(a) – f '(а)a, вынося за скобку общий множитель, получаем:

y = f(a) + f '(а) · (x-a).

Нами получено уравнение касательной к графику функции y = f(x) в точке х = а.

Чтобы уверенно решать задачи на касательную, нужно четко понимать смысл каждого  элемента  в данном уравнении. Давайте ещё раз остановимся на этом: (слайд 10)

  1. (а, f (а) ) – координаты точки касания
  2. f '(а) = tg α = к тангенс угла наклона или угловой коэффициент
  3. (х,у) – координаты любой точки  касательной

И так мы вывели уравнение касательной, проанализировали смысл каждого элемента в данном уравнении, давайте попробуем теперь вывести  алгоритм  составления уравнения касательной к графику функции y = f (x)

7. Историческая справка  

Внимание на экран. Расшифруйте слово

С

f(x) = √(3-2х)

f '(1) = ?

Я

f(x) = 5 / ³√ (3х+2)

f '(-1/3) = ?

Ю

f(x) = 12 / √ (3х ²+1)

f '(1) = ?

Ф

f(x) = 4√ (3-2х²)

f '(-1) = ?

К

f(x) = 2 ctg 2x

f '(-π/4) = ?

И

f(x) = 4/(2-cos 3x)

f '(- π/6) = ?

Л

f(x) = tg x

f '( π /6 ) = ?

1

4/3

9

-4

-1

-3

5

 

 

 

 

 

 

 

Ответ: ФЛЮКСИЯ (слайд 13).

Какова история происхождения этого названия? (слайд 14,15)

Понятие производная возникло в связи с необходимостью решения ряда задач физики, механики и математики. Честь открытия основных законов математического анализа принадлежит английскому ученому Ньютону и немецкому математику Лейбницу. Лейбниц рассматривал задачу о проведении касательной к произвольной кривой.Ньютон

Знаменитый физик Исаак Ньютон, родившейся в английской деревушке Вульстроп, внес немалый вклад и в математику. Решая задачи на проведение касательных к кривым, вычисляя площади криволинейных фигур, он создал общий метод решения таких задач – метод флюксий (производных), а саму производную называл флюентой.

Он вычислил производную и интеграл степенной функции. О дифференциальном и интегральном исчислениях он пишет в своей работе «Метод флюксий» (1665 – 1666гг.), послужившей одним из начал математического анализа, дифференциального и интегрального исчисления, которое ученый разработал независимо от Лейбница. Лейбниц

Многие ученые в разные годы интересовались касательной. Эпизодически понятие касательной встречалось в работах итальянского математика Н.Тартальи (ок. 1500 – 1557гг.) – здесь касательная появилась в ходе изучения вопроса об угле наклона орудия, при котором обеспечивается наибольшая данность полета снаряда. И. Кепплер рассматривал касательную в ходе решения задачи о наибольшем объеме параллелепипеда, вписанного в шар данного радиуса.

В 17 веке на основе учения Г.Галилея о движении активно развилась кинематическая концепция производной. Различные варианты изложения встречаются у Р.Декарта.

8. Закрепление

(слайд 16-18).

1) Составить уравнение касательной к графику функции f(x) = х² - 3х + 5 в точке с абсциссой а = -1.

Решение:

Составим уравнение касательной (по алгоритму). Вызвать сильного ученика.

  1. а = -1;
  2. f(a) = f(-1) = 1 + 3 + 5 = 9;
  3. f '(x) = 2х – 3,
    f '(a) = f '(-1) = -2 – 3 = -5;
  4. y = 9 – 5 · (x + 1),

y = 4 – 5x.

Ответ: y = 4 – 5x.

Задания ЕГЭ 2011 года В-8

1.Функция у = f(x) определена на  промежутке (-3; 4). На рисунке изображён её  график и касательная к этому графику в точке с абсциссой а = 1. Вычислите значение  производной f'(x) в точке а= 1.

Решение: для решения необходимо вспомнить, что если известны координаты каких-либо двух точек А и В, лежащих на данной прямой, то её угловой коэффициент можно вычислить по формуле: к = , где (x11), (х2; у2)— координаты точек А, В соответственно. По графику видно, что эта касательная проходит через точки с координатами (1; -2) и (3; -1),

 значит к=(-1-(-2))/(3-1)= 0,5.

к= fˈ(1)=0,5

2. Функция у = f(x) определена на  промежутке (-3;4). На рисунке изображён её  график и касательная к этому графику в точке с абсциссой а = -2. Вычислите значение  производной f'(x) в точке а = -2.

Решение : график проходит через точки  (-2;1) (0;-1) . fˈ(-2)= -2

8.Домашнее задание

(слайд 19).

Подготовка к ЕГЭ В-8  № 3 - 10

9.Самостоятельная работа

Напишите уравнение касательной к графику функции у=f(x)  в точке с абсциссой а.
вариант 1                             вариант 2

f(x) = х²+ х+1, а=1                     f(x)= х-3х², а=2

ответы: 1 вариант: у=3х; 2 вариант: у= -11х+12

10. Подведение итогов.

  • Что называется касательной к графику функции в точке?
  • В чём заключается геометрический смысл производной?
  • Сформулируйте алгоритм нахождения уравнения касательной в точке?

Ссылки на использованные интернет-ресурсы

http://festival.1september.ru/articles/584315/

http://festival.1september.ru/articles/518318/



По теме: методические разработки, презентации и конспекты

План-конспект урока "Планы на будущее"

План конспект урока по английскому языку. Класс:5Тема:Планы на будущееУчитель: Фролова Татьяна ВикторовнаУчебник: «Enjoy English » 5-6 классы. (Биболетова М.З., Трубанева Н.Н.).Цели:Уч...

ПЛАН-КОНСПЕКТ УРОКА План-конспект урока в 11 классе «Фотоэффект. Применение фотоэффекта.»

Урок с использованием  ЭОР. В изучении нового материала используется информационный модуль  "Фотоэффект" для базового уровня старшей школы.  В практический модуль входи...

План – конспект урока по физической культуре в 7 классе Тема: «Баскетбол. Ловля, передача и ведение мяча» План – конспект урока по физической культуре в 7 классе Тема: «Баскетбол. Ловля, передача и ведение мяча»

Цель урока: Развитие новых умений и навыков при игре в баскетбол, воспитание  дисциплинированности.Задачи урока: 1. Совершенствование  техники выполнения  передачи  мяча ...

План-конспект учебного занятия "Уравнение касательной к графику функции"

Уравнение касательной к графику функции. Дистанционный урок...

План – конспект урока по физической культуре в 7 классе Тема: «Баскетбол. Ловля, передача и ведение мяча» План – конспект урока по физической культуре в 7 классе Тема: «Баскетбол. Ловля, передача и ведение мяча»

План – конспект урока по физической культуре в 7 классе Тема: «Баскетбол. Ловля, передача и ведение мяча» План – конспект урока по физической культуре в 7 классе Тема: «Б...

План-конспект урока изобразительного искусства 5 класс. Тема:(Конструкция и декор предметов народного быта. Русская прялка) План-конспект урока изобразительного искусства 6 класс. Тема:(Линия и пятно в графике. Стилизация животных)

План-конспект урока изобразительного искусства 5 класс. Тема:(Конструкция и декор предметов народного быта. Русская прялка)План-конспект урока изобразительного искусства 6 класс. Тема:(Линия и пятно в...

Разработка спортивного мероприятия в летнем лагере " Сильный,смелый,ловкий". План-конспект тренировочного занятия по волейболу. План-конспект занятия по легкой атлетики

Разработка спортивного мероприятия в летнем лагере " Сильный,смелый,ловкий".План-конспект тренировочного занятия по волейболу.  План-конспект занятия по легкой атлетики....