Свойства функции
презентация к уроку по алгебре (9 класс) на тему

Кочкова Валерия Валерьевна

Свойства функции

Скачать:

ВложениеРазмер
Файл shishkova_e.i.funkciya.svoystva_funkcii.pptx894.57 КБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Функция. Свойства функции.

Слайд 2

Способы задания функций - Аналитический (с помощью формулы) - Графический - Табличный - Описательный (словесное описание) Сила равна скорости изменения импульса х -39 8 -2 у 3 0 -7

Слайд 3

График функции Графиком функции f называют множество всех точек ( х ; у) координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты равны соответствующим значениям функции. Задание 2 . Определите, какой из данных графиков является графиком функции Рис.1 Рис.2 Рис.3 Рис.4 у у у у х х х х НЕ ЯВЛЯЮТСЯ графиками функций рис.1, рис. 3,рис. 4

Слайд 4

1. Область определения 2. Область значений 3. Нули функции 4. Четность 5. Промежутки знакопостоянства 6. Непрерывность 7. Монотонность 8. Наибольшее и наименьшее значения 9. Ограниченность 10. Выпуклость Свойства функции Алгоритм описания свойств функции

Слайд 5

1.Область определения Область определения функции – все значения, которые принимает независимая переменная. Обозначается : D ( f ). Пример . Функция задана формулой у = Данная формула имеет смысл при всех значениях х ≠ -3 , х ≠ 3, поэтому D( y )=( - ∞ ;-3) U (-3;3) U (3; + ∞ )

Слайд 6

2. Область значений Область (множество) значений функции – все значения, которые принимает зависимая переменная. Обозначается : E (f) Пример . Функция задана формулой у = Данная функция является квадратичной , график – парабола, вершина (0; 9) поэтому E( y )= [ 9 ; + ∞ )

Слайд 7

Нулем функции y = f ( x ) называется такое значение аргумента x 0 , при котором функция обращается в нуль : f (x 0 ) = 0 . Нули функции - абсциссы точек пересечения с Ох 3. Нули функции x 1 ,x 2 - нули функции

Слайд 8

4. Четность Четная функция Нечетная функция Функция y = f(x) называется четной, если для любого х из области определения выполняется равенство f (-x) = f (x) . График ч етной функция симметричен относительно оси ординат . Функция y = f(x) называется нечетной, если для любого х из области определения выполняется равенство f (-x) = - f (x) . График нечетной функции симметричен относительно начала координат .

Слайд 9

5 . Промежутки знакопостоянства Промежутки, на которых непрерывная функция сохраняет свой знак и не обращается в нуль, называются промежутками знакопостоянства . y > 0 (график расположен выше оси ОХ) при х  ( - ∞ ; 1) U (3; + ∞ ) , y <0 (график расположен ниже OX) при х  ( 1 ;3)

Слайд 10

6. Непрерывность Функция называется непрерывной на промежутке, если она определена на этом промежутке и непрерывна в каждой точке этого промежутка. Непрерывность функции на промежутке Х означает, что график функции на всей области определения сплошной , т.е. не имеет проколов и скачков . Задание . Определите, на каком из рисунков изображен график непрерывной функции . 1 2 подумай правильно

Слайд 11

7. Монотонность Функцию у = f ( х ) называют возрастающей на множестве Х , если для любых двух точек х 1 и х 2 из области определения, таких , что х 1 < х 2 , выполняется неравенство f (х 1 ) < f (х 2 ) . Функцию у = f ( х ) называют убывающей на множестве Х , если для любых двух точек х 1 и х 2 из области определения, таких, что х 1 < х 2 , выполняется неравенство f (х 1 ) >f (х 2 ) . x 1 х 1 x 2 f(x 2 ) f(x 1 ) x 2 x 1 x 2 f(x 2 ) f(x 1 )

Слайд 12

8.Наибольшее и наименьшее значения Число m называют наименьшим значением функции у = f ( х ) на множестве Х , если: 1) в области определения существует такая точка х 0 , что f (х 0 ) = m . 2) всех х из области определения выполняется неравенство f ( х ) ≥ f (х 0 ). Число M называют наибольшим значением функции у = f ( х ) на множестве Х , если: 1) в области определения существует такая точка х 0 , что f (х 0 ) = M . 2) для всех х из области определения выполняется неравенство f ( х ) ≤ f (х 0 ).

Слайд 14

9. Ограниченность Функцию у = f ( х ) называют ограниченной снизу на множестве Х , если все значения функции на множестве Х больше некоторого числа . Функцию у = f ( х ) называют ограниченной сверху на множестве Х , если все значения функции на множестве Х меньше некоторого числа . х у х у

Слайд 15

10. Выпуклость Функция выпукла вниз на промежутке Х если, соединив любые две точки ее графика отрезком прямой, мы обнаружим, что соответствующая часть графика лежит ниже проведенного отрезка. Функция выпукла вверх на промежутке Х , если соединив любые две точки ее графика отрезком прямой, мы обнаружим, что соответствующая часть графика лежит выше проведенного отрезка .

Слайд 16

Источники: 1.Мордкович А. Г. Алгебра и начала математического анализа. 10—11 классы. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (базовый уровень) / А. Г. Мордкович. — 10-е изд., стер. — М. : Мнемозина, 2009. 2.Картинка с сайта: Сова- http://www.allforchildren.ru/pictures/school/school10-01.gif


По теме: методические разработки, презентации и конспекты

Чтение свойств функции по графику и распознование графиков элементарных функций

Изучение данной темы проводится на спаренном уроке алгебры в 10 лассе, а также все эти ресурсы применяю при подготовке к контрольным работам и подготовке ЕГЭ по математике...

Презентация.Функция.Свойства функции.

Презентация выполнена в MsOffice  2007.Содержит основные понятия по теме функция, свойства функции. Данная презентация может быть использована на обобщающем уроке в 9 классе,при повторении в 10 к...

«Общее понятие функции, способы её задания, свойства функции».

Данный урок является первым в разделе «Числовые функции, свойства функции и их графики». При проведении урока используется компьютер для  представления мультимедийного приложения....

Преобразования графиков тригонометрических функций в среде Microsoft Excel. Свойства функций.

Интегрированный (математика+информатика) урок. Цель урока: актуализация знаний и навыков учащихся по темам «Графики тригонометрических функций. Свойства функций». Развитие навыка применять знания в но...

Квадратичная функция. Функция. Свойства функций. Область определения и область значений функции. Четные и нечетные функции.

Квадратичная функция. Функция. Свойства функций.  Область определения и область значений функции. Четные и нечетные функции....

Методическая разработка дистанционного урока в 10 классе на тему "Функция y = cosx, свойства, график, периодичность, основной период. Применение свойств функции y = cosx."

Тип урока: урок открытия новых знанийЦели урока: Ознакомиться со свойствами функции y = cosx; ее графиком, периодичностью и основным периодом;Уметь применять свойства функции y = cosx при решении зада...