РАБОЧАЯ ПРОГРАММА ПО МАТЕМАТИКЕ
рабочая программа по алгебре (10 класс) на тему

Профессия: 35.01.24. Управляющий сельской усадьбой

Скачать:

ВложениеРазмер
Файл prg_us_mat_2017.docx79.25 КБ

Предварительный просмотр:

Министерство образования и молодежной политики Ставропольского края

ГБПОУ «Григорополисский сельскохозяйственный техникум имени атамана М.И.Платова»

                                                                                               

Рабочая программа  

Дисциплина «МАТЕМАТИКА»

Профессия: 35.01.24. Управляющий сельской усадьбой

Ст. Григорополисская

2017 г.

Рабочая программа междисциплинарного курса разработана на основе Федерального государственного образовательного стандарта по профессии среднего профессионального образования утвержденного 02.08.2013 г. Приказ №721 ( в редакции приказа мин. обр. науки России от 09.04.2015. № 390 ) по профессии  СПО 112201.02  (35.01.24)  «Управляющий сельской усадьбой"

Одобрена:

На заседании цикловой комиссии

«Рабочих профессий»

Протокол №______________

От «__»_________ 20___г.

Председатель________ Г.Ю. Филимонова

                           

УТВЕРЖДАЮ

Заместитель директора по учебной работе

       _______________________ Н.А. Чикильдина

Организация-разработчик:

ГБПОУ ГСХТ

 им. атамана М.И.Платова

Разработчик:

Рогова Наталья Александровна преподаватель  


СОДЕРЖАНИЕ

стр.

  1. ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

4

  1. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

7

  1. УСЛОВИЯ РЕАЛИЗАЦИИ  УЧЕБНОЙ ДИСЦИПЛИНЫ

16

  1. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

19

1. ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

Математика

название дисциплины

  1. Область применения программы

      Общеобразовательная учебная дисциплина «Математика» изучается в пределах освоения основной профессиональной образовательной программы СПО (ОПОП СПО) на базе основного общего образования при подготовке квалифицированных рабочих по профессии  112201.02  (35.01.24)  Управляющий сельской усадьбой

1.2. Место учебной дисциплины в структуре основной профессиональной образовательной программы:

Учебная дисциплина «Математика» является учебным предметом по выбору из обязательной предметной области «Социально-экономического науки» ФГОС среднего общего образования.

Учебная дисциплина «Математика» изучается в общеобразовательном цикле учебного плана ОПОП СПО на базе основного общего образования с получением среднего общего образования (ППКРС).

В учебном плане ППКРС место учебной дисциплины «Математика» — в составе общеобразовательных учебных дисциплин по выбору, формируемых из обязательных предметных областей ФГОС среднего общего образования, для профессий СПО технического профиля профессионального образования.

1.3. Цели и задачи учебной дисциплины – требования к результатам освоения учебной дисциплины:

Содержание программы «Математика» направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, для продолжения образования и самообразования;
  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения смежных технических дисциплин на базовом уровне и дисциплин профессионального цикла, для получения образования в областях, не требующих углубленной математической подготовки;
  • воспитание средствами математики культуры личности, понимания значимости математики для социально-экономического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.

Основу программы составляет содержание, согласованное с требованиями федерального компонента государственного стандарта  среднего (полного) общего образования базового уровня.

В программе учебный материал  представлен в форме чередующегося развертывания основных содержательных линий:

 алгебраическая линия, включающая систематизацию сведений о числах; изучение новых и обобщение ранее изученных операций (возведение в степень, извлечение корня, логарифмирование, синус, косинус, тангенс, котангенс и обратные к ним); изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и прикладных задач;

 теоретико-функциональная линия, включающая систематизацию и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;

 линия уравнений и неравенств, основанная на построении и исследовании математических моделей, пересекающаяся с алгебраической и теоретико-функциональной линиями и включающая развитие и совершенствование техники алгебраических преобразований для решения уравнений, неравенств и систем; формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных и специальных дисциплин;

 геометрическая линия, включающая наглядные представления о пространственных фигурах и изучение их свойств, формирование и развитие пространственного воображения, развитие способов геометрических измерений, координатного и векторного методов для решения математических и прикладных задач;

 стохастическая линия, основанная на развитии комбинаторных умений, представлений о вероятностно-статистических закономерностях окружающего мира.

Развитие содержательных линий сопровождается совершенствованием интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления.

Математика является фундаментальной общеобразовательной дисциплиной со сложившимся устойчивым содержанием и общими требованиями к подготовке обучающихся. Реализация общих целей изучения математики традиционно формируется в четырех направлениях – методическое (общее представление об идеях и методах математики), интеллектуальное развитие, утилитарно-прагматическое направление (овладение необходимыми конкретными знаниями и умениями) и воспитательное воздействие.

Профилизация целей математического образования  отражается на  выборе приоритетов в организации учебной деятельности обучающихся. Для социально-экономического профиля выбор целей  смещается в прагматическом направлении, предусматривающем усиление и расширение прикладного характера  изучения математики; преимущественной ориентации на алгоритмический стиль познавательной деятельности.

Изучение математики как профильного учебного предмета обеспечивается:

–  выбором различных подходов к введению основных понятий;

– формированием системы учебных заданий, обеспечивающих эффективное осуществление выбранных целевых установок;

– обогащением спектра стилей учебной деятельности за счет согласования с ведущими деятельностными характеристиками выбранной профессии.

Профильная составляющая отражается в требованиях к подготовке  обучающихся в части:

– общей системы знаний: содержательные примеры использования математических идей и методов в профессиональной деятельности;

–  умений: различие в уровне требований к сложности применяемых алгоритмов;

–  практического использования приобретенных знаний и умений: индивидуального учебного опыта в построении математических моделей, выполнении исследовательских и проектных работ.

Таким образом, программа ориентирует на приоритетную роль процессуальных характеристик учебной работы, зависящих от профиля профессиональной подготовки, акцентирует значение получения опыта использования математики в содержательных и профессионально значимых ситуациях по сравнению с формально-уровневыми результативными характеристиками обучения.

В программе курсивом выделен материал, который при изучении математики и как базового, и как профильного учебного предмета контролю не подлежит.

Рабочая программа учебной дисциплины «Математика» служит основой для разработки рабочих программ, в которых образовательные учреждения начального уточняют  последовательность изучения учебного материала, профессионально значимый материал, распределение учебных часов с учетом профиля получаемого профессионального образования, виды самостоятельной работы обучающихся, примерные темы для исследовательских и лабораторных работ.

        А так же, в соответствии с ФГОС, должен обладать общими компетенциями, включающими в себя способность:

ОК 1. Понимать сущность и социальную значимость будущей профессии, проявлять к ней устойчивый интерес.

ОК 2. Организовывать собственную деятельность, исходя из цели и способов ее достижения, определенных руководителем.

ОК 3. Анализировать рабочую ситуацию, осуществлять текущий и итоговый контроль, оценку и коррекцию собственной деятельности, нести ответственность за результаты своей работы.

ОК 4. Осуществлять поиск информации, необходимой для эффективного выполнения профессиональных задач.

ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.

ОК 6. Работать в команде, эффективно общаться с коллегами, руководством, клиентами.

ОК 7. Организовывать собственную деятельность с соблюдением требований охраны труда и экологической безопасности.

ОК 8. Осуществлять денежные операции.

ОК 9. Исполнять воинскую обязанность, в том числе с применением полученных профессиональных знаний (для юношей)

1.4. Рекомендуемое количество часов на освоение программы учебной дисциплины:

максимальной учебной нагрузки обучающегося 426 часа, в том числе:

обязательной аудиторной учебной нагрузки обучающегося  284 часа;

самостоятельной работы обучающегося  142  часа.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы

Объем часов

Максимальная учебная нагрузка (всего)

426

Обязательная аудиторная учебная нагрузка (всего)

284

в том числе:

лабораторные занятия

-

практические занятия

124

контрольные работы

курсовая работа (проект) (если предусмотрено)

-

Самостоятельная работа обучающегося (всего)

142

в том числе:

создание презентаций

10

подготовка информационных сообщений

16

выполнение графических работ

14

решение заданий по образцу

12

выполнение заданий по алгоритму

14

составление и заполнение таблиц для систематизации учебного материала

8

составление или решение математического кроссворда на математические понятия, определения и т.п

20

изготовление геометрических фигур

10

творческие работы (реферат, доклад, сообщение);

38

Итоговая аттестация в форме экзамена                                                                                                             4

СТРУКТУРА И ПРИМЕРНОЕ СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Объем учебной дисциплины и виды учебной работы «Управляющий сельской усадьбой»

ТЕМАТИЧЕСКИЙ ПЛАН

Управляющий сельской усадьбой

Наименование тем

Внеаудиторная самостоятельная работа

Количество часов

НПО

284

всего

теория

практика

Введение

2

2

Алгебра

26

36

20

16

Основы тригонометрии

20

42

22

20

Функции и  графики

20

30

18

12

Начала математического анализа

12

18

12

6

Уравнения и неравенства

16

20

10

10

Комбинаторика, статистика и теория вероятности

18

48

28

20

Геометрия

30

88

48

40

Промежуточная аттестация в форме экзамена

Итого

142

284

160

124

2.2. Тематический план и содержание учебной дисциплины «МАТЕМАТИКА»

Наименование разделов

Содержание учебного материала, лабораторные  работы и практические занятия, самостоятельная работа обучающихся

Объем часов

Уровень освоения

1

2

3

4

Введение

 Математика в науке, технике, экономике, информационных технологиях и практической деятельности. Цели и задачи изучения математики при освоении профессий СПО и специальностей СПО.

2

 

Раздел 1. АЛГЕБРА 

 

36

 

 

Содержание учебного материала

20

Развитие понятия о числе

Целые и рациональные числа. Действительные числа. Приближенные вычисления.

Комплексные числа.

Корни, степени и логарифмы

Корни и степени. Корни натуральной степени из числа и их свойства. Степени с рациональными показателями, их свойства. Степени с действительными показателями. Свойства степени с действительным показателем.

Логарифм. Логарифм числа. Основное логарифмическое тождество. Десятичные и натуральные логарифмы. Правила действий с логарифмами. Переход к новому основанию.

Преобразование алгебраических выражений. Преобразование рациональных, иррациональных степенных, показательных и логарифмических выражений

2

Практические работы

Арифметические действия над числами, нахождение приближенных значений величин и погрешностей вычислений (абсолютной относительной), сравнение числовых выражений.

Вычисление и сравнение корней. Выполнение расчетов с радикалами.

Решение иррациональных уравнений. Нахождение значений степеней с рациональными показателями. Сравнение степеней. Преобразования выражений, содержащих

степени. Решение показательных уравнений.

Решение прикладных задач.

Нахождение значений логарифма по произвольному основанию. Переход от одного

основания к другому. Вычисление и сравнение логарифмов. Логарифмирование и

потенцирование выражений.

Приближенные вычисления и решения прикладных задач.

Решение логарифмических уравнений.

16

Внеаудиторная (самостоятельная)  работа обучающихся

26

Раздел 2. ОСНОВЫ ТРИГОНОМЕТРИИ

 

42

 

Содержание учебного материала

22

Основные понятия

Радианная мера угла. Вращательное движение. Синус, косинус, тангенс и котангенс числа.

Основные тригонометрические тождества

Формулы приведения. Формулы сложения. Формулы удвоения Формулы половинного угла.

Преобразования простейших тригонометрических выражений

Преобразование суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного

аргумента.

Тригонометрические уравнения и неравенства

Простейшие тригонометрические уравнения. Простейшие тригонометрические

неравенства.

Обратные тригонометрические функции. Арксинус, арккосинус, арктангенс.

2

Практические работы 

Радианный метод измерения углов вращения и связь с градусной мерой.

Основные тригонометрические тождества, формулы сложения, удвоения, преобразование суммы тригонометрических функций в произведение, преобразование произведения тригонометрических функций в сумму.  Простейшие тригонометрические

уравнения и неравенства. Обратные тригонометрические функции: арксинус, арккосинус, арктангенс.

20

 

Внеаудиторная (самостоятельная)  работа обучающихся

20

Раздел 3. Функции , их свойства и графики

 

30

 

Содержание учебного материала

18

 

Функции. Область определения и множество значений; график функции, построение графиков функций, заданных различными способами.

Свойства функции. Монотонность, четность, нечетность, ограниченность, периодичность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума. Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях. Арифметические операции над функциями.

Сложная функция (композиция). Понятие о непрерывности функции.

Обратные функции. Область определения и область значений обратной функции.

График обратной функции.

Степенные, показательные, логарифмические и тригонометрические функции.

Обратные тригонометрические функции

Определения функций, их свойства и графики.

Преобразования графиков. Параллельный перенос, симметрия относительно осей

координат и симметрия относительно начала координат, симметрия относительно

прямой y = x, растяжение и сжатие вдоль осей координат.

2

Практические  работы

Примеры зависимостей между переменными в реальных процессах из смежных

дисциплин. Определение функций. Построение и чтение графиков функций. Исследование функции. Свойства линейной, квадратичной, кусочно-линейной и дробно-

линейной функций. Непрерывные и периодические функции. Свойства и графики

синуса, косинуса, тангенса и котангенса. Обратные функции и их графики. Обратные

тригонометрические функции. Преобразования графика функции. Гармонические

колебания. Прикладные задачи.

Показательные, логарифмические, тригонометрические уравнения и неравенства

12

 

Внеаудиторная (самостоятельная)  работа обучающихся

20

Раздел 4.

 НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

Содержание учебного материала

18

Последовательности. Способы задания и свойства числовых последовательностей.

Понятие о пределе последовательности. Существование предела монотонной

ограниченной последовательности. Суммирование последовательностей. Бесконечно

убывающая геометрическая прогрессия и ее сумма.

Производная. Понятие о производной функции, ее геометрический и физический смысл. Уравнение касательной к графику функции. Производные суммы, разности,

произведения, частные. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции функции. Примеры использования производной для нахождения наилучшего решения в прикладных задачах. Вторая производная, ее геометрический и физический смысл .Нахождение скорости для процесса, заданного формулой и графиком.

Первообразная и интеграл. Применение определенного интеграла для нахождения

площади криволинейной трапеции. Формула Ньютона—Лейбница. Примеры применения интеграла в физике и геометрии.

12

        2

Практические занятия

Числовая последовательность, способы ее задания, вычисления членов последовательности. Предел последовательности. Бесконечно убывающая геометрическая прогрессия.

Производная: механический и геометрический смысл производной.

Уравнение касательной в общем виде. Правила и формулы дифференцирования,

таблица производных элементарных функций. Исследование функции с помощью

производной. Нахождение наибольшего, наименьшего значения и экстремальных

значений функции.

Интеграл и первообразная. Теорема Ньютона—Лейбница. Применение интеграла

к вычислению физических величин и площадей.

6

Внеаудиторная (самостоятельная)  работа обучающихся

12

Раздел 5. УРАВНЕНИЯ И НЕРАВЕНСТВА

Содержание учебного материала

20

Уравнения и системы уравнений. Рациональные, иррациональные, показательные

и тригонометрические уравнения и системы.

Равносильность уравнений, неравенств, систем.

Основные приемы их решения (разложение на множители, введение новых неизвестных, подстановка, графический метод).

Неравенства. Рациональные, иррациональные, показательные и тригонометрические неравенства. Основные приемы их решения.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Прикладные задачи

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

10

        2

Практические занятия

Корни уравнений. Равносильность уравнений. Преобразование уравнений. Основные приемы решения уравнений. Решение систем уравнений. Использование свойств и графиков функций для решения уравнений и неравенств и свойства.

10

Внеаудиторная (самостоятельная)  работа обучающихся

16

Раздел 6. КОМБИНАТОРИКА, СТАТИСТИКА И ТЕОРИЯ ВЕРОЯТНОСТЕЙ

 

48

 

 

Содержание учебного материала

28

 

Элементы комбинаторики

Основные понятия комбинаторики. Задачи на подсчет числа размещений, перестановок, сочетаний. Решение задач на перебор вариантов. Формула бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля.

Элементы теории вероятностей

Событие, вероятность события, сложение и умножение вероятностей. Понятие о независимости событий. Дискретная случайная величина, закон ее распределения.

Числовые характеристики дискретной случайной величины. Понятие о законе

больших чисел.

Элементы математической статистики

Представление данных (таблицы, диаграммы, графики), генеральная совокупность, выборка, среднее арифметическое, медиана. Понятие о задачах математической статистики. Решение практических задач с применением вероятностных методов.

2

Практические занятия

История развития комбинаторики, теории вероятностей и статистики и их роль в

различных сферах человеческой жизнедеятельности. Правила комбинаторики. Решение комбинаторных задач. Размещения, сочетания и перестановки. Бином Ньютона и треугольник Паскаля. Прикладные задачи.

Классическое определение вероятности, свойства вероятностей, теорема о сумме

вероятностей. Вычисление вероятностей. Прикладные задачи. Представление числовых данных. Прикладные задачи

20

 

Внеаудиторная (самостоятельная)  работа обучающихся

18

 Раздел 7 . ГЕОМЕТРИЯ

 

88

 

 

Содержание учебного материала

48

 

Прямые и плоскости в пространстве

Взаимное расположение двух прямых в пространстве. Параллельность прямой и

плоскости. Параллельность плоскостей. Перпендикулярность прямой и плоскости.

Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол.

Угол между плоскостями. Перпендикулярность двух плоскостей.

Геометрические преобразования пространства: параллельный перенос, симметрия

относительно плоскости.

Параллельное проектирование. Площадь ортогональной проекции. Изображение

пространственных фигур.

Многогранники

Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб. Пирамида. Правильная пирамида. Усеченная пирамида. Тетраэдр. Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Сечения куба, призмы и пирамиды.

Представление о правильных многогранниках (тетраэдре, кубе, октаэдре, додекаэдре и икосаэдре).

Тела и поверхности вращения

Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения, параллельные основанию. Шар и сфера, их сечения. Касательная плоскость к сфере.

Измерения в геометрии

Объем и его измерение. Интегральная формула объема. Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

Подобие тел. Отношения площадей поверхностей и объемов подобных тел.

Координаты и векторы

Прямоугольная (декартова) система координат в пространстве. Формула расстояния между двумя точками. Уравнения сферы, плоскости и прямой.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Разложение вектора по направлениям. Угол между двумя векторами. Проекция вектора на ось. Координаты вектора. Скалярное произведение

векторов. Использование координат и векторов при решении математических и прикладных задач.

2

Практические занятия

Признаки взаимного расположения прямых. Угол между прямыми. Взаимное

расположение прямых и плоскостей. Перпендикуляр и наклонная к плоскости. Угол

между прямой и плоскостью. Теоремы о взаимном расположении прямой и плоскости.

Теорема о трех перпендикулярах.

Признаки и свойства параллельных и перпендикулярных плоскостей. Расстояние от точки до плоскости, от прямой до плоскости, расстояние между плоскостями, между скрещивающимися прямыми, между произвольными фигурами в пространстве.

Параллельное проектирование и его свойства. Теорема о площади ортогональной

проекции многоугольника. Взаимное расположение пространственных фигур. Различные виды многогранников. Их изображения. Сечения, развертки многогранников. Площадь поверхности. Виды симметрий в пространстве. Симметрия тел вращения и многогранников. Вычисление площадей и объемов. Векторы. Действия с векторами. Декартова система координат в пространстве. Уравнение окружности, сферы, плоскости. Расстояние между точками. Действия с векторами, заданными координатами. Скалярное произведение векторов. Векторное уравнение прямой и плоскости. Использование векторов при доказательстве теорем стереометрии.

40

Внеаудиторная (самостоятельная)  работа обучающихся

30

Всего

426

 

3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Требования к минимальному материально-техническому обеспечению  реализации общеобразовательной дисциплины «Математика»

Реализация программы дисциплины требует наличия учебного кабинета Математика.

                 

В состав учебно-методического и материально-технического обеспечения программы учебной дисциплины «Математика», входят:

  • многофункциональный комплекс преподавателя;
  • наглядные пособия (комплекты учебных таблиц, плакаты, портреты выдающихся ученых-математиков);
  • информационно-коммуникативные средства;
  • экранно-звуковые пособия;
  • технические средства обучения;
  • демонстрационное оборудование (общего назначения и тематические наборы);
  • статические, динамические, демонстрационные и раздаточные модели;
  • вспомогательное оборудование;
  • комплект технической документации, в том числе паспорта на средства обучения, инструкции по их использованию и технике безопасности;
  • библиотечный фонд. 

3.2. Информационно-коммуникационное обеспечение обучения

Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы

Для студентов

Алимов Ш. А. и др. Математика: алгебра и начала математического анализа, геометрия.

Алгебра и начала математического анализа (базовый и углубленный уровни).10—11 классы. — М., 2014.

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа. Геометрия. Геометрия (базовый и углубленный уровни). 10—11 классы. — М., 2014.

Башмаков М. И. Математика: учебник для студ. учреждений сред. проф. образования. — М., 2014.

Башмаков М. И. Математика. Сборник задач профильной направленности: учеб. Пособие для студ. учреждений сред. проф. образования. — М., 2014.

Башмаков М. И. Математика. Задачник: учеб. пособие для студ. учреждений сред. проф.

образования. — М., 2014.

Башмаков М. И. Математика. Электронный учеб.-метод. комплекс для студ. Учреждений сред. проф. образования. — М., 2015.

Башмаков М. И. Математика (базовый уровень). 10 класс. — М., 2014.

Башмаков М. И. Математика (базовый уровень). 11 класс. — М., 2014.

Башмаков М. И. Алгебра и начала анализа, геометрия. 10 класс. — М., 2015.

Башмаков М. И. Математика (базовый уровень). 10 класс. Сборник задач: учеб. пособие. — М.,2014.

Башмаков М. И. Математика (базовый уровень). 11 класс. Сборник задач: учеб. пособие. — М., 2015.

Гусев В. А., Григорьев С. Г., Иволгина С. В. Математика для профессий и специальностей

социально-экономического профиля: учебник для студ. учреждений сред. проф. образования. — М., 2014.

Колягин Ю.М., Ткачева М. В, Федерова Н. Е. и др. Математика: алгебра и начала математического анализа. Алгебра и начала математического анализа (базовый и углубленный

уровни). 10 класc / под ред. А. Б. Жижченко. — М., 2014.

Колягин Ю.М., Ткачева М. В., Федерова Н. Е. и др. Математика: алгебра и начала математического анализа. Алгебра и начала математического анализа (базовый и углубленный уровни). 11 класс / под ред. А. Б. Жижченко. — М., 2014.

Для преподавателей

   Конституция Российской Федерации (принята всенародным голосованием 12.12.1993) (с учетом поправок, внесенных федеральными конституционными законами РФ о поправках к Конституции РФ от 30.12.2008 № 6-ФКЗ, от 30.12.2008 № 7-ФКЗ) // СЗ РФ. — 2009. — № 4. — Ст. 445

Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации».

    Приказ Министерства образования и науки РФ от 17.05.2012 № 413 «Об утверждении

федерального государственного образовательного стандарта среднего (полного) общего образования».

    Приказ Министерства образования и науки РФ от 29.12.2014 № 1645 «О внесении изменений в Приказ Министерства образования и науки Российской Федерации от 17.05.2012 № 413 «“Об утверждении федерального государственного образовательного стандарта среднего

(полного) общего образования”».

     Письмо Департамента государственной политики в сфере подготовки рабочих кадров и ДПО Министерства образования и науки РФ от 17.03.2015 № 06-259 «Рекомендации по организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом требований федеральных государственных образовательных стандартов и получаемой профессии или специальности среднего профессионального образования».

   Федеральный закон от 10.01.2002 № 7-ФЗ «Об охране окружающей среды» (в ред. от 25.06.2012, с изм. от 05.03.2013) // СЗ РФ. — 2002. — № 2. — Ст. 133.

Башмаков М. И. Математика: кн. для преподавателя: метод. пособие. — М., 2013

Башмаков М. И., Цыганов Ш. И. Методическое пособие для подготовки к ЕГЭ. — М., 2011.

Интернет-ресурсы

www.fcior.edu.ru (Федеральный центр информационно-образовательных ресурсов). wwww.dic.academic.ru (Академик. Словари и энциклопедии). www.booksgid.com (Вооks Gid). Электронная библиотека). www.globalteka.ru (Глобалтека. Глобальная библиотека научных ресурсов). www.window.edu.ru (Единое окно доступа к образовательным ресурсам). www.st-books.ru (Лучшая учебная литература).

www.school.edu.ru (Российский образовательный портал. Доступность, качество, эффективность).

www. ru/book (Электронная библиотечная система).

www. school-collection. edu. ru (Единая коллекция цифровых образовательных ресурсов).

www.kvant.mccme.ru (научно-популярный физико-математический журнал «Квант»).

  1. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий и лабораторных работ, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.

Результаты обучения

(освоенные умения, усвоенные знания)

Формы и методы контроля и оценки результатов обучения

   В результате изучения учебной дисциплины «Математика» обучающийся должен

знать/понимать:[1]*

−− сформированность представлений о математике как части мировой культуры и месте математики в современной цивилизации, способах описания явлений реального мира на математическом языке;

−− сформированность представлений о математических понятиях как важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;

−− владение методами доказательств и алгоритмов решения, умение их применять, проводить доказательные рассуждения в ходе решения задач;

−− владение стандартными приемами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств;

−− сформированность представлений об основных понятиях математического анализа и их свойствах, владение умением характеризовать поведение функций, использование полученных знаний для описания и анализа реальных зависимостей;

−− владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах; сформированность умения распознавать геометрические фигуры на чертежах, моделях и в реальном мире; применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;

−− сформированность представлений о процессах и явлениях, имеющих вероятностный характер, статистических закономерностях в реальном мире,

основных понятиях элементарной теории вероятностей; умений находить и

оценивать вероятности наступления событий в простейших практических

ситуациях и основные характеристики случайных величин;

−− владение навыками использования готовых компьютерных программ при

решении задач.

АЛГЕБРА

уметь:

  • выполнять арифметические действия над числами, сочетая устные и письменные приемы; находить приближенные значения величин и погрешности вычислений (абсолютная и относительная); сравнивать числовые выражения;
  • находить значения корня, степени, логарифма, тригонометрических выражений на основе определения, используя при необходимости инструментальные средства; пользоваться приближенной оценкой при практических расчетах;
  • выполнять преобразования выражений, применяя формулы, связанные со свойствами степеней, логарифмов, тригонометрических функций;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

  • для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства.

ОК 1-9

Функции и графики

уметь:

  • вычислять значение функции по заданному значению аргумента при различных способах задания функции;
  • определять основные свойства числовых функций, иллюстрировать их на графиках;
  • строить графики изученных функций, иллюстрировать по графику свойства элементарных функций;
  • использовать понятие функции для описания и анализа зависимостей величин;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

  • для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.

ОК 1-9

Начала математического анализа

уметь:

  • находить производные элементарных функций;
  • использовать производную для изучения свойств функций и построения графиков;
  • применять производную для проведения приближенных вычислений, решать задачи прикладного характера на нахождение наибольшего и наименьшего значения;
  • вычислять в простейших случаях площади и объемы с использованием определенного интеграла;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.

ОК 1-9

Уравнения и неравенства

уметь:

  • решать рациональные, показательные, логарифмические, тригонометрические уравнения, сводящиеся к линейным и квадратным, а также аналогичные неравенства и системы;
  • использовать графический метод решения уравнений и неравенств;
  • изображать на координатной плоскости решения уравнений, неравенств и систем с двумя неизвестными;
  • составлять и решать уравнения и неравенства, связывающие неизвестные величины в текстовых (в том числе прикладных) задачах.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

  • для построения и исследования простейших математических моделей.

ОК 1-9

КОМБИНАТОРИКА, СТАТИСТИКА И ТЕОРИЯ ВЕРОЯТНОСТЕЙ

уметь:

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
  • вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

  • для анализа реальных числовых данных, представленных в виде диаграмм, графиков;
  • анализа информации статистического характера.

ОК 1-9

ГЕОМЕТРИЯ

уметь:

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
  • анализировать в простейших случаях взаимное расположение объектов в пространстве;
  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
  • строить простейшие сечения куба, призмы, пирамиды;
  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
  • использовать при решении стереометрических задач планиметрические факты и методы;
  • проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

  • для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

ОК 1-9

оценка результатов деятельности обучающихся при выполнении аудиторной и внеаудиторной работы, тестирования, написание рефератов, создание презентаций

оценка результатов деятельности обучающихся при выполнении практических работ, решении задач по образцу и внеаудиторной работы, выполнение графических работ

оценка результатов деятельности обучающихся при выполнении аудиторной и внеаудиторной работы, составление опорного конспекта, выполнение заданий по алгоритму

оценка результатов деятельности обучающихся при решения практических задач и внеаудиторной работы, составление кроссвордов

оценка результатов деятельности обучающихся при решения практических задач и внеаудиторной работы, подготовка информационных сообщений, создание презентаций

оценка результатов деятельности обучающихся при решения практических задач и внеаудиторной работы, изготовление геометрических фигур, выполнение графических работ, составление и заполнение таблиц для систематизации учебного материала.



[1]*         Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.


По теме: методические разработки, презентации и конспекты

Рабочая программа по математике в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по математики 5-9 классы. Математика 5 класс: И.И.Зубарева, А.

Рабочая программа разработана  на один учебный год:   в основу программы положены педагогические и дидактические принципы (личностно ориентированные; культурно ориентированные; деятельно...

Рабочая программа по математике в соответствии с требованиями ФГОС основного общего образования и на основе примерной основной образовательной программы. 5 класс Математика

Примерная программа по математике предназначена для 5 классов общеобразовательных учреждений. Она составлена на основе проекта Федерального государственного образовательного стандарта общего образован...

Рабочая программа по математике к учебникам "Математика 5" и "Математика 6" С. М. Никольский и другие

Рабочая программа составлена в соответствии с требованиями к рабочей программе, содержит ссылки на дидактические материалы...

Рабочая программа по математике 9 класс - программа для специальных (коррекционных) общеобразовательных учреждений VIII вида (сборник 1) В. В. Воронкова 5 – 9 классы Математика ГИЦ «Владос», 2000г.

Рабочая программа по математике 9 класс - программа для специальных (коррекционных) общеобразовательных учреждений VIII вида (сборник 1)   В. В. Воронкова 5 – 9 классы Математика ГИЦ «Владос», 20...

Рабочие программы по математике для 5 класса, по алгебре для 8 класса. УМК А. Г. Мордкович. Рабочие программы по геометрии для 7 и 8 класса. Программа соответствует учебнику Погорелова А.В. Геометрия: Учебник для 7-9 классов средней школы.

Рабочая программа содержит пояснительную записку, содержание учебного материала, учебно - тематическое планирование , требования к математической подготовке, список рекомендованной литературы, календа...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

РАБОЧАЯ ПРОГРАММА по математике для 5-х классов Разработана на основе примерной рабочей программы ( автор – составитель О.С. Кузнецова ) учителем математики ГБОУ школы № 645 Старковской С.Н

Настоящая рабочая программа разработана в соответствии с основными положениями федерального государственного образовательного стандарта основного общего образования по математике....