Элективный курс по алгебре «Решение задач повышенной сложности» (10-11 классы)
элективный курс по алгебре (10, 11 класс) на тему

Элективный курс по алгебре  «Решение задач повышенной сложности» для учащихся 10-11 классов

Скачать:

ВложениеРазмер
Файл ek_10_-_11_klassy_2016-2017.docx55.5 КБ

Предварительный просмотр:

Образовательная программа СОО

ГБОУ СОШ №633 г. Москва

Рабочая программа

по элективному

 курсу по алгебре

«Решение задач повышенной сложности»

Мавлютова Равиля Минсеетовича,

учителя первой квалификационной категории,

10А, 11А классы

2016-2017 учебный год

Пояснительная записка

        Рабочая программа по элективному курсу по алгебре в 10А и 11А классах составлена в соответствии со следующими правовыми и нормативными документами:

- Федеральный Закон «Об образовании в Российской Федерации (от 29.12.2012 г. № 273-ФЗ) с изменениями от 31.12.2015г.

- Примерная основная образовательная программа среднего общего образования (одобрена решением федерального учебно-методического объединения по общему образованию; протокол от 28 июня 2016 г. № 2/16-з).

- Постановление Главного государственного санитарного врача РФ от 24.11.2015 №87 «О внесении изменений в № 3 СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения, содержания в общеобразовательных организациях».

- Приказ Министерства образования и науки РФ от 31 марта 2014 года № 253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования» (с изменениями от 08.06.2015, от 28.12.2015, от 26.01.2016).

- Приказ Министерства образования и науки РФ от 14 декабря 2009 г. №729 с изменениями от 13.01.2011 г. №2 об утверждении перечня организаций, осуществляющих издание учебных пособий, которые допущены к использованию в образовательной деятельности.

Программа по предмету составлена на основе следующих нормативно-правовых документов:

  1. Сборник нормативных документов. Математика / сост. Э. Д. Днепров, А. Г. Аркадьев. ─ 2-е изд., стереотип. ─ М.  : Дрофа, 2006 (2007).
  2. Федеральный компонент государственного стандарта общего образования, утвержденный приказом МО РФ «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования» от 05.03.2004г. № 1089.

        Программа предполагает непрерывное изучение математики на углубленном уровне в 10-11-х классах в объеме 420 часа, из них 280 часов отводится на изучение алгебры (4 часа в неделю) и 140 часов (2 часа в неделю) ─ на изучение геометрии. Программа элективного курса в 10А и 11А классах рассчитана на 68 часов из расчета 1 час в неделю.

Учебно-методический комплект

  1. Мордкович А.Г. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных организаций (базовый и углубленный уровни) / А.Г. Мордкович, П.В. Семенов. – 3-е изд., стер. ─  М. : Мнемозина, 2015.
  2.  Мордкович А.Г. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных организаций (базовый и углубленный уровни) / А.Г. Мордкович, П.В. Семенов. – 3-е изд., стер. ─  М : Мнемозина, 2015.
  3. Мордкович А.Г. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных организаций (базовый и углубленный уровни) / А.Г. Мордкович, П.В. Семенов. ─ 2-е изд., стер. ─ М. : Мнемозина, 2014.
  4. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных организаций (базовый и углубленный уровни) / А.Г. Мордкович и др.; под ред. А. Г. Мордковича. – 2-е изд., стер. ─  М .: Мнемозина, 2014.
  5. Глизбург В. И. Алгебра и начала математического анализа. 11 класс. Контрольные работы для учащихся общеобразовательных организаций (профильный уровень) / В. И. Глизбург.; под ред. А. Г. Мордковича. ─ 3-е изд., стер. ─ М.: Мнемозина, 2013.
  6. Ершова А. П., Голобородько В. В. Самостоятельные и контрольные работы по алгебре и началам анализа для 10-11 классов. ─ М.: Илекса, 2005.
  7. ЕГЭ. 4000 задач с ответами по математике. Все задания группы «Закрытый сегмент». Базовый и профильный уровни  / А.Л. Семенов, И.В. Ященко, И.Р. Высоцкий, Д.Д.Гущин, М.А. Посицельская, С.Е. Посицельский, С.А. Шестаков, Д.Э. Шноль, П.И. Захаров, А.В. Семенов, В.А. Смирнов; под. ред. И.В.Ященко. ─ М.: Издательство «Экзамен», 2016.
  8.  ЕГЭ- 2016. Математика. 30 вариантов типовых тестовых заданий и 800 заданий части 2 / И. Р. Высоцкий и др.; под ред. И. В. Ященко. ─ М.: Издательство «Экзамен», издательство МЦНМО, 2016.
  9. Журнал «Математика в Школе», приложение к газете «Первое сентября».

Текущий контроль осуществляется с помощью самостоятельных работ и зачетов (5-10 минут). Тематический контроль осуществляется по завершении крупного блока (темы) в форме интерактивного тестирования, проверочной работы или компьютерного практикума. Итоговый контроль осуществляется по завершении учебного материала за год в форме интерактивного тестирования или теста по опросному листу, проверочной работы.

Планируемые результаты освоения учебного предмета

Личностные результаты:

Личностные результаты в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя:

  • ориентация обучающихся на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;
  • готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности;
  • готовность и способность обучающихся к отстаиванию личного достоинства, собственного мнения, готовность и способность вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны;
  • готовность и способность обучающихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества, потребность в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью;
  • принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
  • неприятие вредных привычек: курения, употребления алкоголя, наркотиков.

Личностные результаты в сфере отношений обучающихся к России как к Родине (Отечеству):

  • российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите;
  • уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение к государственным символам (герб, флаг, гимн);
  • формирование уважения к русскому языку как государственному языку Российской Федерации, являющемуся основой российской идентичности и главным фактором национального самоопределения;
  • воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации.

Личностные результаты в сфере отношений обучающихся к закону, государству и к гражданскому обществу:

  • гражданственность, гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности, готового к участию в общественной жизни;
  • признание неотчуждаемости основных прав и свобод человека, которые принадлежат каждому от рождения, готовность к осуществлению собственных прав и свобод без нарушения прав и свобод других лиц, готовность отстаивать собственные права и свободы человека и гражданина согласно общепризнанным принципам и нормам международного права и в соответствии с Конституцией Российской Федерации, правовая и политическая грамотность;
  • мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
  • интериоризация ценностей демократии и социальной солидарности, готовность к договорному регулированию отношений в группе или социальной организации;
  • готовность обучающихся к конструктивному участию в принятии решений, затрагивающих их права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности;
  • приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к национальному дост
  • оинству людей, их чувствам, религиозным убеждениям;  
  • готовность обучающихся противостоять идеологии экстремизма, национализма, ксенофобии; коррупции; дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям.

Личностные результаты в сфере отношений обучающихся с окружающими людьми:

  • нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;
  • принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению;
  • способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь;
  • формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия и дружелюбия);
  • развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.

Личностные результаты в сфере отношений обучающихся к окружающему миру, живой природе, художественной культуре:

  • мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
  • готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
  • экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности;
  • эстетическое отношения к миру, готовность к эстетическому обустройству собственного быта.

Личностные результаты в сфере отношений обучающихся к семье и родителям, в том числе подготовка к семейной жизни:

  • ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни;
  • положительный образ семьи, родительства (отцовства и материнства), интериоризация традиционных семейных ценностей.

Личностные результаты в сфере отношения обучающихся к труду, в сфере социально-экономических отношений:

  • уважение ко всем формам собственности, готовность к защите своей собственности,
  • осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;
  • готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем;
  • потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности;
  • готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.

Личностные результаты в сфере физического, психологического, социального и академического благополучия обучающихся:

  • физическое, эмоционально-психологическое, социальное благополучие обучающихся в жизни образовательной организации, ощущение детьми безопасности и психологического комфорта, информационной безопасности.

Метапредметные результаты:

Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД).

  1. Регулятивные универсальные учебные действия

Выпускник научится:

  • самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
  • оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
  • ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
  • оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
  • выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
  • организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
  • сопоставлять полученный результат деятельности с поставленной заранее целью.

2. Познавательные универсальные учебные действия

Выпускник научится:

  • искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
  • критически оценивать и интерпретировать информацию с разных позиций,  распознавать и фиксировать противоречия в информационных источниках;
  • использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
  • находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
  • выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для  широкого переноса средств и способов действия;
  • выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
  • менять и удерживать разные позиции в познавательной деятельности.

  1. Коммуникативные универсальные учебные действия

Выпускник научится:

  • осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
  • при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
  • координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
  • развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
  • распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

Предметные результаты:

На базовом уровне:

  • Выпускник научится в 10–11-м классах: для использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики.
  • Выпускник получит возможность научиться в 10–11-м классах: для развития мышления, использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики.

На углубленном уровне:

  • Выпускник научится в 10–11-м классах: для успешного продолжения образования по специальностям, связанным с прикладным использованием математики.
  • Выпускник получит возможность научиться в 10–11-м классах: для обеспечения возможности успешного продолжения образования по специальностям, связанным с осуществлением научной и исследовательской деятельности в области математики и смежных наук.

Базовый уровень

«Проблемно-функциональные результаты»

Углубленный уровень

«Системно-теоретические результаты»

Раздел

I. Выпускник научится

III. Выпускник получит возможность научиться

II. Выпускник научится

IV. Выпускник получит возможность научиться

Цели освоения предмета

Для использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики

Для развития мышления, использования в повседневной жизни

и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики

Для успешного продолжения образования

по специальностям, связанным с прикладным использованием математики

Для обеспечения возможности успешного продолжения образования по специальностям, связанным с осуществлением научной и исследовательской деятельности в области математики и смежных наук

Требования к результатам

Элементы теории множеств и математи

ческой логики

  • Оперировать на базовом уровне понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал; 
  • оперировать на базовом уровне понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;  
  • находить пересечение и объединение двух множеств, представленных графически на числовой прямой;
  • строить на числовой прямой подмножество числового множества, заданное простейшими условиями;
  • распознавать ложные утверждения, ошибки в рассуждениях,          в том числе с использованием контрпримеров.

В повседневной жизни и при изучении других предметов:

  • использовать числовые множества на координатной прямой для описания реальных процессов и явлений;
  • проводить логические рассуждения в ситуациях повседневной жизни
  • Оперировать понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;
  • оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;
  • проверять принадлежность элемента множеству;
  • находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;
  • проводить доказательные рассуждения для обоснования истинности утверждений.

В повседневной жизни и при изучении других предметов:

  • использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;
  • проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов
  • Свободно оперировать понятиями: конечное множество, элемент множества, подмножество, пересечение, объединение и разность множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;
  • задавать множества перечислением и характеристическим свойством;
  • оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;
  • проверять принадлежность элемента множеству;
  • находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;
  • проводить доказательные рассуждения для обоснования истинности утверждений.

В повседневной жизни и при изучении других предметов:

  • использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;
  • проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов
  • Достижение результатов раздела II;
  • оперировать понятием определения, основными видами определений, основными видами теорем;
  • понимать суть косвенного доказательства;
  • оперировать понятиями счетного и несчетного множества;
  • применять метод математической индукции для проведения рассуждений и доказательств и при решении задач.

В повседневной жизни и при изучении других предметов:

  • использовать теоретико-множественный язык и язык логики для описания реальных процессов и явлений, при решении задач других учебных предметов

Числа и выражения

  • Оперировать на базовом уровне понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближённое значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб;
  • оперировать на базовом уровне понятиями: логарифм числа, тригонометрическая окружность, градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину;
  • выполнять арифметические действия с целыми и рациональными числами;
  • выполнять несложные преобразования числовых выражений, содержащих степени чисел, либо корни из чисел, либо логарифмы чисел;
  • сравнивать рациональные числа между собой;
  • оценивать и сравнивать с рациональными числами значения целых степеней чисел, корней натуральной степени из чисел, логарифмов чисел в простых случаях;
  • изображать точками на числовой прямой целые и рациональные числа;
  • изображать точками на числовой прямой целые степени чисел, корни натуральной степени из чисел, логарифмы чисел в простых случаях;
  • выполнять несложные преобразования целых и дробно-рациональных буквенных выражений;
  • выражать в простейших случаях из равенства одну переменную через другие;
  • вычислять в простых случаях значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
  • изображать схематически угол, величина которого выражена в градусах;
  • оценивать знаки синуса, косинуса, тангенса, котангенса конкретных углов.

В повседневной жизни и при изучении других учебных предметов:

  • выполнять вычисления при решении задач практического характера;
  • выполнять практические расчеты с использованием при необходимости справочных материалов и вычислительных устройств;
  • соотносить реальные величины, характеристики объектов окружающего мира с их конкретными числовыми значениями;
  • использовать методы округления, приближения и прикидки при решении практических задач повседневной жизни
  • Свободно оперировать понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближённое значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб;
  • приводить примеры чисел с заданными свойствами делимости;
  • оперировать понятиями: логарифм числа, тригонометрическая окружность, радианная и градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину, числа е и π;
  • выполнять арифметические действия, сочетая устные и письменные приемы, применяя при необходимости вычислительные устройства;
  • находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства;
  • пользоваться оценкой и прикидкой при практических расчетах;
  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, корни, логарифмы и тригонометрические функции;
  • находить значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
  • изображать схематически угол, величина которого выражена в градусах или радианах;
  • использовать при решении задач табличные значения тригонометрических функций углов;
  • выполнять перевод величины угла из радианной меры в градусную и обратно.

В повседневной жизни и при изучении других учебных предметов:

  • выполнять действия с числовыми данными при решении задач практического характера и задач из различных областей знаний, используя при необходимости справочные материалы и вычислительные устройства;
  • оценивать, сравнивать и использовать при решении практических задач числовые значения реальных величин, конкретные числовые характеристики объектов окружающего мира

  • Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
  • понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;
  • переводить числа из одной системы записи (системы счисления) в другую;
  • доказывать и использовать признаки делимости суммы и произведения при выполнении вычислений и решении задач;
  • выполнять округление рациональных и иррациональных чисел с заданной точностью;
  • сравнивать действительные числа разными способами;
  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;
  • находить НОД и НОК разными способами и использовать их при решении задач;
  • выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней;
  • выполнять стандартные тождественные преобразования тригонометрических, логарифмических, степенных, иррациональных выражений.

В повседневной жизни и при изучении других предметов:

  • выполнять и объяснять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;
  • записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;
  • составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов
  • Достижение результатов раздела II;
  • свободно оперировать числовыми множествами при решении задач;
  • понимать причины и основные идеи расширения числовых множеств;
  • владеть основными понятиями теории делимости при решении стандартных задач
  • иметь базовые представления о множестве комплексных чисел;
  • свободно выполнять тождественные преобразования тригонометрических, логарифмических, степенных выражений;
  • владеть формулой бинома Ньютона;
  • применять при решении задач теорему о линейном представлении НОД;
  • применять при решении задач Китайскую теорему об остатках;
  • применять при решении задач Малую теорему Ферма;
  • уметь выполнять запись числа в позиционной системе счисления;
  • применять при решении задач теоретико-числовые функции: число и сумма делителей, функцию Эйлера;
  • применять при решении задач цепные дроби;
  • применять при решении задач многочлены с действительными и целыми коэффициентами;
  • владеть понятиями приводимый и неприводимый многочлен и применять их при решении задач;
  • применять при решении задач Основную теорему алгебры;
  • применять при решении задач простейшие функции комплексной переменной как геометрические преобразования

Уравнения и неравенст

ва

  • Решать линейные уравнения и неравенства, квадратные уравнения;
  • решать логарифмические уравнения вида log a (bx + c) = d и простейшие неравенства вида log a x < d;
  • решать показательные уравнения, вида abx+c= d  (где d можно представить в виде степени с основанием a) и простейшие неравенства вида ax < d    (где d можно представить в виде степени с основанием a);.
  • приводить несколько примеров корней простейшего тригонометрического уравнения вида: sin x = a,  cos x = a,  tg x = a, ctg x = a, где a – табличное значение соответствующей тригонометрической функции.

В повседневной жизни и при изучении других предметов:

  • составлять и решать уравнения и системы уравнений при решении несложных практических задач
  • Решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, неравенства и их системы;
  • использовать методы решения уравнений: приведение к виду «произведение равно нулю» или «частное равно нулю», замена переменных;
  • использовать метод интервалов для решения неравенств;
  • использовать графический метод для приближенного решения уравнений и неравенств;
  • изображать на тригонометрической окружности множество решений простейших тригонометрических уравнений и неравенств;
  • выполнять отбор корней уравнений или решений неравенств в соответствии с дополнительными условиями и ограничениями.

В повседневной жизни и при изучении других учебных предметов:

  • составлять и решать уравнения, системы уравнений и неравенства при решении задач других учебных предметов;
  • использовать уравнения и неравенства для построения и исследования простейших математических моделей реальных ситуаций или прикладных задач;
  • уметь интерпретировать полученный при решении уравнения, неравенства или системы результат, оценивать его правдоподобие в контексте заданной реальной ситуации или прикладной задачи
  • Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;
  • решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3-й и 4-й степеней, дробно-рациональные и иррациональные;
  • овладеть основными типами показательных, логарифмических, иррациональных, степенных уравнений и неравенств и стандартными методами их решений и применять их при решении задач;
  • применять теорему Безу к решению уравнений;
  • применять теорему Виета для решения некоторых уравнений степени выше второй;
  • понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;
  • владеть методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;
  • использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;
  • решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;
  • владеть разными методами доказательства неравенств;
  • решать уравнения в целых числах;
  • изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами;
  • свободно использовать тождественные преобразования при решении уравнений и систем уравнений

В повседневной жизни и при изучении других предметов:

  • составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;
  • выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;
  • составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;
  • составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты;
  •  использовать программные средства при решении отдельных классов уравнений и неравенств
  • Достижение результатов раздела II;
  • свободно определять тип и выбирать метод решения показательных и логарифмических уравнений и неравенств, иррациональных уравнений и неравенств, тригонометрических уравнений и неравенств, их систем;
  • свободно решать системы линейных уравнений;
  • решать основные типы уравнений и неравенств с параметрами;
  • применять при решении задач неравенства Коши — Буняковского, Бернулли;
  • иметь представление о неравенствах между средними степенными

Функции

  • Оперировать на базовом уровне понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период;
  • оперировать на базовом уровне понятиями: прямая и обратная пропорциональность линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции; 
  • распознавать графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций;
  • соотносить графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций с формулами, которыми они заданы;
  • находить по графику приближённо значения функции в заданных точках;
  • определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т.п.);
  • строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания / убывания, значение функции в заданной точке, точки экстремумов и т.д.).

В повседневной жизни и при изучении других предметов:

  • определять по графикам свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства и т.п.);
  • интерпретировать свойства в контексте конкретной практической ситуации
  • Оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции;
  • оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции; 
  • определять значение функции по значению аргумента при различных способах задания функции;
  • строить графики изученных функций;
  • описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
  • строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания/убывания, значение функции в заданной точке, точки экстремумов, асимптоты, нули функции и т.д.);
  • решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков.

В повседневной жизни и при изучении других учебных предметов:

  • определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, период и т.п.);
  • интерпретировать свойства в контексте конкретной практической ситуации; 
  • определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)
  • Владеть понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции; уметь применять эти понятия при решении задач;
  • владеть понятием степенная функция; строить ее график и уметь применять свойства степенной функции при решении задач;
  • владеть понятиями показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач;
  • владеть понятием логарифмическая функция; строить ее график и уметь применять свойства логарифмической функции при решении задач;
  • владеть понятиями тригонометрические функции; строить их графики и уметь применять свойства тригонометрических функций при решении задач;
  • владеть понятием обратная функция; применять это понятие при решении задач;
  • применять при решении задач свойства функций: четность, периодичность, ограниченность;
  • применять при решении задач преобразования графиков функций;
  • владеть понятиями числовая последовательность, арифметическая и геометрическая прогрессия;
  • применять при решении задач свойства и признаки арифметической и геометрической прогрессий.

В повседневной жизни и при изучении других учебных предметов:

  • определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, точки перегиба, период и т.п.);
  • интерпретировать свойства в контексте конкретной практической ситуации;.
  • определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)
  • Достижение результатов раздела II;
  • владеть понятием асимптоты и уметь его применять при решении задач;
  • применять методы решения простейших дифференциальных уравнений первого и второго порядков

Элементы математи

ческого анализа

  • Оперировать на базовом уровне понятиями: производная функции в точке, касательная к графику функции, производная функции;
  • определять значение производной функции в точке по изображению касательной к графику, проведенной в этой точке;
  • решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции – с другой.

В повседневной жизни и при изучении других предметов:

  • пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т.п.) или скорости убывания (падения, снижения, уменьшения и т.п.) величин в реальных процессах;
  • соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т.п.);
  • использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса
  • Оперировать понятиями: производная функции в точке, касательная к графику функции, производная функции;
  • вычислять производную одночлена, многочлена, квадратного корня, производную суммы функций;
  • вычислять производные элементарных функций и их комбинаций, используя справочные материалы;
  • исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа.

В повседневной жизни и при изучении других учебных предметов:

  • решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик реальных процессов, нахождением наибольших и наименьших значений, скорости и ускорения и т.п.;
  •  интерпретировать полученные результаты
  • Владеть понятием бесконечно убывающая геометрическая прогрессия и уметь применять его при решении задач;
  • применять для решения задач теорию пределов;
  • владеть понятиями бесконечно большие и бесконечно малые числовые последовательности и уметь сравнивать бесконечно большие и бесконечно малые последовательности;
  • владеть понятиями: производная функции в точке, производная функции;
  • вычислять производные элементарных функций и их комбинаций;
  • исследовать функции на монотонность и экстремумы;
  • строить графики и применять к решению задач, в том числе с параметром;
  • владеть понятием касательная к графику функции и уметь применять его при решении задач;
  • владеть понятиями первообразная функция, определенный интеграл;
  • применять теорему Ньютона–Лейбница и ее следствия для решения задач.

В повседневной жизни и при изучении других учебных предметов:

  • решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик процессов;
  •  интерпретировать полученные результаты
  • Достижение результатов раздела II;
  • свободно владеть стандартным аппаратом математического анализа для вычисления производных функции одной переменной;
  • свободно применять аппарат математического анализа для исследования функций и построения графиков, в том числе исследования на выпуклость;
  • оперировать понятием первообразной функции для решения задач;
  • овладеть основными сведениями об интеграле Ньютона–Лейбница и его простейших применениях;
  • оперировать в стандартных ситуациях производными высших порядков;
  • уметь применять при решении задач свойства непрерывных функций;
  • уметь применять при решении задач теоремы Вейерштрасса;
  • уметь выполнять приближенные вычисления (методы решения уравнений, вычисления определенного интеграла);
  • уметь применять приложение производной и определенного интеграла к решению задач естествознания;
  • владеть понятиями вторая производная, выпуклость графика функции и уметь исследовать функцию на выпуклость

Статистика и теория вероятностей, логика и комбинаторика

  • Оперировать на базовом уровне основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения;
  • оперировать на базовом уровне понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;
  • вычислять вероятности событий на основе подсчета числа исходов.

В повседневной жизни и при изучении других предметов:

  • оценивать и сравнивать в простых случаях вероятности событий в реальной жизни;
  • читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков
  • Иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин;
  • иметь представление о математическом ожидании и дисперсии случайных величин;
  • иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;
  • понимать суть закона больших чисел и выборочного метода измерения вероятностей;
  • иметь представление об условной вероятности и о полной вероятности, применять их в решении задач;
  • иметь представление о важных частных видах распределений и применять их в решении задач;
  • иметь представление о корреляции случайных величин, о линейной регрессии.

В повседневной жизни и при изучении других предметов:

  • вычислять или оценивать вероятности событий в реальной жизни;
  • выбирать подходящие методы представления и обработки данных;
  • уметь решать несложные задачи на применение закона больших чисел в социологии, страховании, здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях
  • Оперировать основными описательными характеристиками числового набора, понятием генеральная совокупность и выборкой из нее;
  • оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей, вычислять вероятности событий на основе подсчета числа исходов;
  • владеть основными понятиями комбинаторики и уметь их применять при решении задач;
  • иметь представление об основах теории вероятностей;
  • иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин;
  • иметь представление о математическом ожидании и дисперсии случайных величин;
  • иметь представление о совместных распределениях случайных величин;
  • понимать суть закона больших чисел и выборочного метода измерения вероятностей;
  • иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;
  • иметь представление о корреляции случайных величин.

В повседневной жизни и при изучении других предметов:

  • вычислять или оценивать вероятности событий в реальной жизни;
  • выбирать методы подходящего представления и обработки данных
  • Достижение результатов раздела II;
  • иметь представление о центральной предельной теореме;
  • иметь представление о выборочном коэффициенте корреляции и линейной регрессии;
  • иметь представление о статистических гипотезах и проверке статистической гипотезы, о статистике критерия и ее уровне значимости;
  • иметь представление о связи эмпирических и теоретических распределений;
  • иметь представление о кодировании, двоичной записи, двоичном дереве;
  • владеть основными понятиями  теории графов (граф, вершина, ребро, степень вершины, путь в графе) и уметь применять их при решении задач;
  • иметь представление о деревьях и уметь применять при решении задач;
  • владеть понятием связность и уметь применять компоненты связности при решении задач;
  • уметь осуществлять пути по ребрам, обходы ребер и вершин графа;
  • иметь представление об эйлеровом и гамильтоновом пути, иметь представление о трудности задачи нахождения гамильтонова пути;
  • владеть понятиями конечные и счетные множества и уметь их применять при решении задач;
  • уметь применять метод математической индукции;
  • уметь применять принцип Дирихле при решении задач

Текстовые задачи

  • Решать несложные текстовые задачи разных типов;
  • анализировать условие задачи, при необходимости строить для ее решения математическую модель;
  • понимать и использовать для решения задачи информацию, представленную в виде текстовой и символьной записи, схем, таблиц, диаграмм, графиков, рисунков;
  • действовать по алгоритму, содержащемуся в условии задачи;
  • использовать логические рассуждения при решении задачи;
  • работать с избыточными условиями, выбирая из всей информации, данные, необходимые для решения задачи;
  • осуществлять несложный перебор возможных решений, выбирая из них оптимальное по критериям, сформулированным в условии;
  • анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;
  • решать задачи на расчет стоимости покупок, услуг, поездок и т.п.;
  • решать несложные задачи, связанные с долевым участием во владении фирмой, предприятием, недвижимостью;
  • решать задачи на простые проценты (системы скидок, комиссии) и на вычисление сложных процентов в различных схемах вкладов, кредитов и ипотек;
  • решать практические задачи, требующие использования отрицательных чисел: на определение температуры, на определение положения на временнóй оси (до нашей эры и после), на движение денежных средств (приход/расход), на определение глубины/высоты и т.п.;
  • использовать понятие масштаба для нахождения расстояний и длин на картах, планах местности, планах помещений, выкройках, при работе на компьютере и т.п.

В повседневной жизни и при изучении других предметов:

  • решать несложные практические задачи, возникающие в ситуациях повседневной жизни
  • Решать задачи разных типов, в том числе задачи повышенной трудности;
  • выбирать оптимальный метод решения задачи, рассматривая различные методы;
  • строить модель решения задачи, проводить доказательные рассуждения;
  • решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;
  • анализировать и интерпретировать результаты в контексте условия задачи, выбирать решения, не противоречащие контексту; 
  • переводить при решении задачи информацию из одной формы в другую, используя при необходимости схемы, таблицы, графики, диаграммы;

В повседневной жизни и при изучении других предметов:

  • решать практические задачи и задачи из других предметов
  • Решать разные задачи повышенной трудности;
  • анализировать условие задачи, выбирать оптимальный метод решения задачи, рассматривая различные методы;
  • строить модель решения задачи, проводить доказательные рассуждения при решении задачи;
  • решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;
  • анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту; 
  • переводить при решении задачи информацию из одной формы записи в другую, используя при необходимости схемы, таблицы, графики, диаграммы.

В повседневной жизни и при изучении других предметов:

  • решать практические задачи и задачи из других предметов
  • Достижение результатов раздела II

История математи

ки

  • Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
  • знать примеры математических открытий и их авторов в связи с отечественной и всемирной историей;
  • понимать роль математики в развитии России
  • Представлять вклад выдающихся математиков в развитие математики и иных научных областей;
  • понимать роль математики в развитии России
  • Иметь представление о вкладе выдающихся математиков в развитие науки;
  • понимать роль математики в развитии России

Достижение результатов раздела II

Методы матема

тики

  • Применять известные методы при решении стандартных математических задач;
  • замечать и характеризовать математические закономерности в окружающей действительности;
  • приводить примеры математических закономерностей в природе, в том числе характеризующих красоту и совершенство окружающего мира и произведений искусства
  • Использовать основные методы доказательства, проводить доказательство и выполнять опровержение;
  • применять основные методы решения математических задач;
  • на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;
  • применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач
  • Использовать основные методы доказательства, проводить доказательство и выполнять опровержение;
  • применять основные методы решения математических задач;
  • на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;
  • применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач;
  • пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов
  • Достижение результатов раздела II;
  • применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики)

Содержание учебного предмета

10 класс

Тригонометрия (8 часов)

Базовый уровень

Тригонометрическая окружность, радианная мера угла. Синус, косинус, тангенс, котангенс произвольного угла. Основное тригонометрическое тождество и следствия из него. Значения тригонометрических функций для углов 0°, 30°, 45°, 60°, 90°, 180°, 270°. ( рад). Формулы сложения тригонометрических функций, формулы приведения, формулы двойного аргумента. Арккосинус, арксинус, арктангенс числа. Арккотангенс числа. Простейшие тригонометрические уравнения. Решение тригонометрических уравнений.

Углубленный уровень

Радианная мера угла, тригонометрическая окружность. Тригонометрические функции чисел и углов. Формулы приведения, сложения тригонометрических функций, формулы двойного и половинного аргумента. Преобразование суммы, разности в произведение тригонометрических функций, и наоборот. Решение задач с использованием градусной меры угла. Тригонометрические уравнения. Однородные тригонометрические уравнения.

Производная и ее применение. Первообразная (7 часов)

Базовый уровень

Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Производные элементарных функций. Правила дифференцирования. Вторая производная, ее геометрический и физический смысл.

Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении задач.

Первообразная. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Определенный интеграл. Вычисление площадей плоских фигур и объемов тел вращения с помощью интеграла.

Углубленный уровень

 Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Применение производной в физике. Производные элементарных функций. Правила дифференцирования. Вторая производная, ее геометрический и физический смысл. Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значение функции. Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении задач.

Первообразная. Неопределенный интеграл. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Определенный интеграл. Вычисление площадей плоских фигур и объемов тел вращения с помощью интеграла.

Степени и корни. Иррациональные уравнения (5 часов)

Степень с действительным показателем, свойства степени. Иррациональные уравнения. Решение задач с использованием свойств степеней и корней. Иррациональные уравнения.

Показательная и логарифмическая функции. Показательные и логарифмические уравнения и неравенства (14 часов)

Базовый уровень

Простейшие показательные уравнения и неравенства. Показательная функция и ее свойства и график.

Логарифм числа, свойства логарифма. Десятичный логарифм. Число е. Натуральный логарифм. Преобразование логарифмических выражений. Логарифмические уравнения и неравенства. Логарифмическая функция и ее свойства и график.

Степенная функция и ее свойства и график.

Углубленный уровень

Простейшие показательные уравнения и неравенства. Показательная функция и ее свойства и график. Число  и функция .

Логарифм, свойства логарифма. Десятичный и натуральный логарифм. Преобразование логарифмических выражений. Логарифмические уравнения и неравенства. Логарифмическая функция и ее свойства и график.

11 класс

Тригонометрия (6 часов)

Базовый уровень

Тригонометрическая окружность, радианная мера угла. Синус, косинус, тангенс, котангенс произвольного угла. Основное тригонометрическое тождество и следствия из него. Значения тригонометрических функций для углов 0°, 30°, 45°, 60°, 90°, 180°, 270°. ( рад). Формулы сложения тригонометрических функций, формулы приведения, формулы двойного аргумента. Арккосинус, арксинус, арктангенс числа. Арккотангенс числа. Простейшие тригонометрические уравнения. Решение тригонометрических уравнений.

Углубленный уровень

Радианная мера угла, тригонометрическая окружность. Тригонометрические функции чисел и углов. Формулы приведения, сложения тригонометрических функций, формулы двойного и половинного аргумента. Преобразование суммы, разности в произведение тригонометрических функций, и наоборот. Решение задач с использованием градусной меры угла. Тригонометрические уравнения. Однородные тригонометрические уравнения.

Производная и ее применение (3 часа)

Базовый уровень

Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Производные элементарных функций. Правила дифференцирования. Вторая производная, ее геометрический и физический смысл.

Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении задач.

Первообразная. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Определенный интеграл. Вычисление площадей плоских фигур и объемов тел вращения с помощью интеграла.

Углубленный уровень

Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Применение производной в физике. Производные элементарных функций. Правила дифференцирования. Вторая производная, ее геометрический и физический смысл.

Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении задач.

Степени и корни. Иррациональные уравнения (4 часа)

Степень с действительным показателем, свойства степени. Иррациональные уравнения. Решение задач с использованием свойств степеней и корней. Иррациональные уравнения.

Решение сложных уравнений и неравенств (21 час)

Базовый уровень

 Простейшие тригонометрические уравнения. Решение тригонометрических уравнений. Простейшие показательные уравнения и неравенства. Логарифмические уравнения и неравенства. Модуль числа и его свойства.  Метод интервалов для решения неравенств. Уравнения, системы уравнений с параметром.

Углубленный уровень

Модуль числа и его свойства. Метод интервалов для решения неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля. Тригонометрические уравнения. Однородные тригонометрические уравнения. Простейшие показательные уравнения и неравенства. Логарифмические уравнения и неравенства. Уравнения, системы уравнений с параметром.

Тематическое планирование

10 класс

№ п. п.

Тема

Количество часов

Вид деятельности ученика

Виды и формы контроля

1

Числовая окружность

1

Нахождение по числовой окружности чисел. Перевод радианной меры в градусную

Зачет

2

Синус, косинус, тангенс, котангенс

1

Нахождение значений тригонометрических функций по окружности

Зачет

3

Формулы приведения

1

Знание правил формул приведения и умение их применять, решение примеров на формулы приведения

Зачет

4

Преобразование тригонометрических выражений

2

Решение задач на преобразование тригонометрических выражений

Зачет

5

Тригонометрические уравнения

3

Решение тригонометрических уравнений по числовой окружности и по формулам

Зачет, проверочная работа

6

Производная

1

Решение устно и письменно примеров на нахождение производной по формулам и правилам

Зачет

7

Производная сложной функции

1

Владение алгоритмом нахождения производной сложной функции, решение задач на производную сложной функции

Проверочная работа

8

Применение производной

3

Решение задач на нахождение промежутков возрастания и убывания, точек экстремума и наибольшего и наименьшего значений различных функций, в том числе по графику функции и по графику производной

Зачет

9

Первообразная

2

Решение задач на вычисление первообразной по формулам и правилам

Зачет, проверочная работа

10

Степени и корни

3

Решение задач на преобразование выражений со степенями и корнями

Зачет

11

Иррациональные уравнения

2

Решение иррациональных уравнений

Зачет, проверочная работа

12

Показательная функция

1

Построение графика показательной функции

Зачет

13

Показательные уравнения

2

Решение показательных уравнений

Зачет

14

Показательные неравенства

2

Решение показательных неравенств

Зачет

15

Логарифм числа

1

Решение примеров на вычисление логарифма

Зачет

16

Преобразование логарифмических выражений

2

Решение задач на преобразование логарифмических выражений

Зачет

17

Логарифмическая функция

1

Построение графика логарифмической функции

Зачет

18

Логарифмические уравнения

2

Решение логарифмических уравнений

Зачет

19

Логарифмические неравенства

3

Решение логарифмических неравенств

Зачет, проверочная работа

11 класс

1

Формулы и уравнения тригонометрии

3

Знание формул, решение задач на формулы и уравнения тригонометрии

Зачет

2

Тригонометрические уравнения

3

Решение тригонометрических уравнений по числовой окружности и по формулам

Зачет, проверочная работа

3

Производная и ее применение

3

Решение задач на производную, нахождение промежутков возрастания и убывания, точек экстремума, наибольшего и наименьшего значений функций

Зачет, проверочная работа

4

Степени и корни

3

Решение задач на преобразование выражений со степенями и корнями

Зачет

5

Иррациональные уравнения

1

Решение иррациональных уравнений

Зачет, проверочная работа

6

Решение тригонометрических уравнений

5

Решение сложных тригонометрических уравнений

Самостоятельная работа

7

Решение неравенств методом интервалов

2

Решение неравенств методом интервалов

Самостоятельная работа

8

Решение показательных уравнений и неравенств

1

Решение показательных уравнений и неравенств

Зачет

9

Преобразование логарифмических выражений

2

Решение задач на преобразование логарифмических выражений

Зачет

10

Решение логарифмических неравенств методом рационализации

3

Решение сложных неравенств методом рационализации

Самостоятельная работа

11

Решение показательных и логарифмических уравнений и неравенств

3

Решение сложных показательных и логарифмических уравнений и неравенств

Самостоятельная работа, проверочная работа

12

Решение задач с параметром

5

Решение уравнений и неравенств, систем уравнений с параметром

Самостоятельная работа


По теме: методические разработки, презентации и конспекты

ПРОГРАММА Элективного курса по алгебре 9 класс Тема: «Решение задач повышенной сложности»

Количество часов - 34.Основная цель электива- это решение задач повышенной сложности и подготовка учащихся к ГИА по алгебре. Программа содержит пояснительную записку,календарно- тематическое планирова...

Практикум по решению физических задач повышенной сложности для 7 класса.

 Практикум по решению физических задач повышенной сложности предназначен  для учащихся 7 класса. Программа курса составлена в соответствии с программой развития школы, соответст...

Программа факультатива для 9 класса по химии «Решение задач повышенной сложности»

Программа факультатива рассчитана на 34 часов (1 час в неделю). Рассматриваются основные темы, необходимые для успешной сдачи ГИА в 9 классе....

Программа дистанционного курса "Олимпиадные задачи и задачи повышенной сложности по математике"

Программа дистанционного курса для учеников 5-6 классов "Олимпиадные задачи и задачи повышенной сложности по математике"....

Урок "Решение задач на совместную работу а так же задач повышенной сложности" (алгебра 9 класс)

Цели: продолжить формирование умения решать текстовые задачи с помощью дробных рациональных уравнений; формировать умение решать задачи на совместную работу и задачи повышенной сложности.Формы организ...

• Сертификат Издательского дома «1 сентября» о просмотре вебинара «Математические задачи повышенной сложности: задачи на оптимизацию (№17 ЕГЭ профиль), 12.02.2021г.

Сертификат Издательского дома «1 сентября» о просмотре вебинара «Математические задачи повышенной сложности: задачи на оптимизацию (№17 ЕГЭ профиль), 12.02.2021г....