Рабочая программа по математике 6 класс ФГОС
рабочая программа по алгебре (6 класс) на тему

Рабочая программа по математике 6 класс ФГОС к УМК авторов Мерзляк А.Г. и др.

Скачать:

ВложениеРазмер
Файл progr_po_matem_6.docx31.59 КБ

Предварительный просмотр:

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

    Программа основного общего образования по математике для 6 класса составлена на основе Фундаментального ядра содержания общего образования,  Требований к результатам освоения основной общеобразовательной программы основного общего образования, представленных в Федеральном государственном образовательном стандарте общего образования,       авторской программы по математике для 5-6 классов общеобразовательных учреждений А.Г.Мерзляк и др. (Математика. Программы  5–11 классы / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко. — М.: Вентана-Граф, 2015).

Программа соответствует учебнику «Математика» для 6 класса образовательных учреждений/А.Г.Мерзляк, В.Б.Полонский, М.С.Якир, Е.В Буцко.-М.:Вентана-Граф, 2016

Данная программа является рабочей программой по предмету «Математика» в 6 классе базового уровня.

Изучение математики в основной школе  направлено на достижение следующих целей:

  1. в направлении личностного развития
  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
  • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
  • развитие интереса к математическому творчеству и математических способностей;
  1. в метапредметном направлении
  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
  1. в предметном направлении
  • овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
  • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Основная цель обучения математике в 6 классе:

  • выявить и развить математические и творческие способности учащихся;
  • обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений;
  • обеспечить базу математических знаний, достаточную для изучения смежных дисциплин и продолжения образования;
  • сформировать устойчивый интерес учащихся к предмету.

Содержание образования по математике в 6 классах определяет следующие задачи:

  • развить представления о рациональных числах и роли вычислений в человеческой практике;
  • сформировать практические навыки выполнения устных, письменных вычислений, развить вычислительную культуру;
  • развить представления об изучаемых понятиях: уравнение, координаты и координатный луч, процент, упрощение буквенных выражений, угол и треугольник, формула и методах решения текстовых задач как важнейших средствах математического моделирования реальных процессов и явлений;
  • развить логическое мышление и речь, умение логически обосновывать суждения, проводить несложные систематизации, проводить примеры, использовать словесный и символический языки математики для иллюстрации, аргументации и доказательства.

  Курс математики 5-6 классов является фундаментом для математического образования и развития школьников, доминирующей функцией при его изучении в этом возрасте является интеллектуальное развитие учащихся. Курс построен на взвешенном соотношении новых и ранее усвоенных знаний, обязательных и дополнительных тем для изучения, а так же учитывает возрастные и индивидуальные особенности усвоения знаний учащимися.

Практическая значимость школьного курса математики 5-6 классов состоит в том, что предметом её изучения являются пространственные формы и количественные отношения реального мира. В современном обществе математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности. Математика является одним из опорных школьных предметов. Математические знания и умения необходимы для изучения алгебры и геометрии в 7–9 классах, а так же для изучения смежных дисциплин.

Одной из основных целей изучения математики является развитие мышления, прежде всего формирование абстрактного мышления. С точки зрения воспитания творческой личности особенно важно, чтобы в структуру мышления учащихся, кроме алгоритмических умений и навыков, которые сформулированы в стандартных правилах, формулах и алгоритмах действий, вошли эвристические приемы, как общего, так и конкретного характера. Эти приёмы, в частности, формируются при поиске решения задач высших уровней сложности. В процессе изучения математики также формируются и такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающее в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение математике даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения. В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

 Знакомство с историей развития математики как науки формирует у учащихся представления о математике как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, обобщение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения задач прикладного характера, на пример решения текстовых задач, денежных и процентных расчётов, умение пользоваться количественной информацией, представленной в различных формах, умение читать графики. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, подхода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа.

ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА МАТЕМАТИКИ В 6 КЛАССЕ

Содержание математического образования в 6 классе представлено в виде следующих содержательных разделов: «Арифметика», «Числовые и буквенные выражения. Уравнения», «Геометрические фигуры. Измерение геометрических величин», «Элементы статистики, вероятности. Комбинаторные задачи», «Математика в историческом развитии».

          Содержание раздела «Арифметика» служит фундаментом для дальнейшего изучения учащимся математики и смежных дисциплин, способствует развитию не только вычислительных навыков, но и логического мышления, формированию умения пользоваться алгоритмами, способствует развитию умений планировать и осуществлять деятельность, направленную на решение различных задач, а также приобретению практических навыков, необходимых в повседневной жизни.

                Содержание раздела «Числовые и буквенные выражения. Уравнения» систематизирует знания о математическом языке, показывая применение букв для обозначения чисел и записи свойств арифметических действий, а также для нахождения неизвестных компонентов арифметических действий.

             Содержание раздела «Геометрические фигуры. Измерение геометрических величин» способствует формированию у учащихся первичных представлений о геометрических абстракциях реального мира, закладывает основы правильной геометрической речи, развивает образное мышление и пространственные представления.

            Содержание раздела «Элементы статистики, вероятности» - обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности-умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся осуществлять рассмотрение случаев, перебор  и подсчет вариантов, в том числе в простейших прикладных заданиях. При изучении статистики и вероятности обогащаются представления о  современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, закладываются основы вероятностного мышления.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

МЕСТО КУРСА В УЧЕБНОМ ПЛАНЕ

В  предметную область «Математика и информатика» входят предметы: математика, алгебра, геометрия, информатика. Математика как предмет существует в начальной школе и в 5–6-х классах основной школы.

   Базисный учебный (образовательный) план на изучение математики в 6 классе основной школы отводит 5 учебных часов в неделю в течение всего года обучения, всего 175 уроков. Из школьного компонента образовательного учреждения выделяется 1 час в неделю на изучение математики в 6 классе, таким образом, количество часов в неделю увеличено до 6,  всего 210 уроков.  В том числе 12 контрольных работ, включая итоговую контрольную работу. Уровень обучения – базовый.

СОДЕРЖАНИЕ КУРСА

Арифметика

Натуральные числа

  • Делители и кратные натурального числа. Наибольший общий делитель. Наименьшее общее кратное. Признаки делимости на 2, на 3, на 5, на 9, на 10.
  • Простые и составные числа. Разложение числа на простые множители.
  • Решение текстовых задач арифметическим способом.

Дроби

  • Отношение. Процентное отношение двух чисел. Деление числа в данном отношении. Масштаб.
  • Пропорция. Основное свойство пропорции. Прямая и обратная пропорциональные зависимости.
  • Проценты. Нахождение процентов от числа. Нахождение числа по его процентам.
  • Решение текстовых задач арифметическим способом.

Рациональные числа

  • Положительные, отрицательные числа и число 0.
  • Противоположные числа. Модуль числа.
  • Целые числа. Рациональные числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства сложения и умножения рациональных чисел.
  • Координатная прямая. Координатная плоскость.

Числовые и буквенные выражения. Уравнения.

  • Раскрытие скобок. Подобные слагаемые, привидение подобных слагаемых. Формулы.
  • Уравнения. Корень уравнения. Основные свойства уравнений. Решение текстовых задач с помощью уравнений.

Элементы статистики, вероятности.

  • Представление данных в виде таблиц, круговых и столбчатых диаграмм, графиков.
  • Случайное событие. Достовернее и невозможное события. Вероятность случайного события. Решение комбинаторных задач.

Геометрические фигуры. Измерение геометрических величин.

  • Наглядные представления о пространственных фигурах: прямоугольный параллелепипед, куб, пирамида, цилиндр, конус, шар, сфера.
  • Примеры разверток многогранников, цилиндра, конуса.
  • Понятие и свойства объема. Объем прямоугольного параллелепипеда и куба.
  • Взаимное расположение двух прямых. Перпендикулярные прямые. Параллельные прямые.
  • Осевая и центральная симметрии.

Математика в историческом развитии

Римская система счисления. Позиционные системы счисления. Обозначение цифр в Древней Руси. Старинные меры длины. Введение метра как единицы длины. Метрическая система мер в России, в Европе. История формирования математических символов. Дроби в Вавилоне, Египте, Риме, на Руси. Открытие десятичных дробей. Мир простых чисел. Золотое сечение. Число нуль. Появление отрицательных чисел.

Количество часов по разделам:

Раздел

Количество часов в рабочей программе

Контрольные работы

1.Делимость натуральных чисел

22

№1

2. Обыкновенные дроби

47

№2, №3, №4

3. Отношения и пропорции

35

№5, №6

4.Рациональные числа и действия над ними

82

№7, №8, №9, №10, №11

5.Итоговое повторение курса математики 6 класса

24

№12

Итого

210

12

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА МАТЕМАТИКИ

В 6 КЛАССЕ

Арифметика

По окончании изучения курса учащийся научится:

  • понимать особенности десятичной системы счисления;
  • использовать понятия, связанные с делимостью натуральных чисел;
  • выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
  • сравнивать и упорядочивать рациональные числа;
  • выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;
  • использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты;
  • анализировать графики зависимостей между величинами (расстояние, время; температура и т. п.).

Учащийся получит возможность:

  • познакомиться с позиционными системами счисления с основаниями, отличными от 10;
  • углубить и развить представления о натуральных числах и свойствах делимости;

научиться использовать приемы, рационализирующие вычисления, приобрести навык контролировать вычисления, выбирая подходящий для ситуации способ.

                             Числовые и буквенные выражения. Уравнения

По окончании изучения курса учащийся научится:

  • выполнять операции с числовыми выражениями;
  • выполнять преобразования буквенных выражений (раскрытие скобок, приведение подобных слагаемых);
  • решать линейные уравнения,
  • решать текстовые задачи алгебраическим методом.

Учащийся получит возможность:

  • развить представления о буквенных выражениях и их преобразованиях;
  • овладеть специальными приёмами решения уравнений,
  • научиться применять аппарат уравнений для решения как текстовых, так и практических задач.

Геометрические фигуры. Измерение геометрических величин

По окончании изучения курса учащийся научится:

  • распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы;
  • строить углы, определять их градусную меру;
  • распознавать и изображать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
  • определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот; вычислять объём прямоугольного параллелепипеда и куба.

Учащийся получит возможность:

  • научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
  • углубить и развить представления о пространственных геометрических фигурах;
  • научиться применять понятие развёртки для выполнения практических расчётов.

Элементы статистики, вероятности. Комбинаторные задачи

По окончании изучения курса учащийся научится:

  • использовать простейшие способы представления и анализа статистических данных;
  • решать комбинаторные задачи на нахождение количества объектов или комбинаций.

Учащийся получит возможность:

  • приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения,
  •  осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;
  • научиться некоторым специальным приёмам решения комбинаторных задач.


По теме: методические разработки, презентации и конспекты

Рабочая программа по математике по ФГОС 6 класс

Планирование составлено на основе  примерной программы по математике федерального компонента государственного стандарта.            Федеральный б...

Рабочая программа по математике по ФГОС 10 класс (5 часов)

Рабочая программа составлена на основе нормативных документов:-Федеральный компонент государственного образовательного стандарта среднего (полного) общего образования, приказ Министерства образования ...

Рабочая программа по математике по ФГОС 10 класс (6 часов)

Рабочая программа составлена на основе нормативных документов:-Федеральный компонент государственного образовательного стандарта среднего (полного) общего образования, приказ Министерства образования ...

Рабочая программа по математике по ФГОС 11 класс (6 часов)

Рабочая программа составлена на основе нормативных документов:-Федеральный компонент государственного образовательного стандарта среднего (полного) общего образования, приказ Министерства образования ...

Рабочая программа по математике по ФГОС 5 класс при больнице

Рабочая программа по математике составлена на основе следующих документов:1.    Примерной программы основного общего образования по математике.2.    Федерального компонен...

рабочая программа по математике по ФГОС, 5-6 классы (УМК А.Г. Мордковича)

данная программа в помощь учителям математики, работающим по УМК А.Г. Мордковича...

Рабочая программа по математике (по ФГОС ООО) в 6 классе (по учебнику Виленкина Н. Я.)

Рабочая программа по математике (по ФГОС ООО) в 6 классе (по учебнику Виленкина Н. Я.)...