Рабочая программа по алгебре 8 класс (Макарычев Ю. Н.)
рабочая программа по алгебре (8 класс) на тему
Настоящая программа по алгебре для основной общеобразовательной школы 8 класса составлена на основе федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерных программ по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263), «Временных требований к минимуму содержания основного общего образования» (приказ МО РФ от 19.05.98. № 1236), примерной программы для общеобразовательных школ, гимназий, лицеев по математике 5-11 классы к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составители Г.М. Кузнецова, Н.Г. Миндюк– М: «Дрофа», 2004. – с. 86-91)
Скачать:
Вложение | Размер |
---|---|
programma_po_algebre_8_luchshe_3_chasa.docx | 181.24 КБ |
temat.plan_8_k.algebra.docx | 46.28 КБ |
Предварительный просмотр:
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Настоящая программа по алгебре для основной общеобразовательной школы 8 класса составлена на основе федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерных программ по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263), «Временных требований к минимуму содержания основного общего образования» (приказ МО РФ от 19.05.98. № 1236), примерной программы для общеобразовательных школ, гимназий, лицеев по математике 5-11 классы к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составители Г.М. Кузнецова, Н.Г. Миндюк– М: «Дрофа», 2004. – с. 86-91)
Цели изучения:
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
- развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса обучающиеся овладевают приёмами вычислений на калькуляторе.
ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.
В курсе алгебры можно выделить следующие основные содержательные линии: арифметика; алгебра; функции; вероятность и статистика. Наряду с этим в содержание включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия — «Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая — «Математика в историческом развитии» — способствует созданию обще культурного, гуманитарного фона изучения курса.
Содержание линии «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе.
Содержание линии «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разделов математики, смежных предмете и окружающей реальности. Язык алгебры подчёркивает значение математики как языка для построения математических моделей процессов и явлений реального мира.
Развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений также являются задачами изучения алгебры. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений.
Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как Важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики • в развитии цивилизации и культуры.
Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности — умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
MEСTO ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ
Базисный учебный (образовательный) план на изучение алгебры в 7—9 классах основной школы отводит 3 часа в неделю в течение каждого года обучения 102 ч, всего 315 уроков.
.
ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОБУЧЕНИЯ И ОСВОЕНИЮ СОДЕРЖАНИЯ КУРСА
Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:
личностные:
- сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;
- сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и
младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности ;
- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;
- умение контролировать процесс и результат учебной математической деятельности;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
метапредметные:
- умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;
- умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
- осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
- умение устанавливать причинно-следственные связи; строить логическое рассуждение, делать умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
- умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
- умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
- сформированность и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ- компетентности);
- первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- умение применять индуктивные и дедуктивные способы
рассуждений, видеть различные стратегии решения задач;
- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.
предметные:
I) умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;
- владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, иметь представление о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
- умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами па основе обобщения частных случаев и эксперимента;
- умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, »смежных предметов, практики;
- овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;
- овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий;
- умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
СОДЕРЖАНИЕ КУРСА
Глава 1. Рациональные дроби
Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у = и её график.
Цель: выработать умение выполнять тождественные преобразования рациональных выражений.
Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с обучающимися преобразования целых выражений.
Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.
При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.
Изучение темы завершается рассмотрением свойств графика функции у =.
Глава 2. Квадратные корни
Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция у = , её свойства и график.
Цель: систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.
В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные обучающимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.
При введении понятия корня полезно ознакомить обучающихся с нахождением корней с помощью калькулятора.
Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество =, которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида , . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.
Продолжается работа по развитию функциональных представлений обучающихся. Рассматриваются функция у=, её свойства и график. При изучении функции у=, показывается ее взаимосвязь с функцией у = х2, где х ≥ 0.
Глава 3. Квадратные уравнения
Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.
Цель: выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.
В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.
Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где а 0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.
Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.
Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.
Глава 4. Неравенства
Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.
Цель: ознакомить обучающихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.
Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной Погрешности и точности приближения, относительной погрешности.
Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.
В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление обучающихся с понятиями пересечения и объединения множеств.
При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах > b, ах < b, остановившись специально на случае, когда а<0.
В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.
Глава 5. Степень с целым показателем. Элементы статистики
Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.
Цель: выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.
В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.
Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Обучающимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные обучающимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма.
6. Повторение
В ходе освоения содержания курса учащиеся получают возможность:
- развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
- овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
- изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
- развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
- получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
- сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
.
УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКТ
- Алгебра: учеб. для 8 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; под ред. С. А. Теляковского. – 17-е изд. – М.: Просвещение, 2008.
- Миндюк, Н.Г. Алгебра. Рабочие программы. Предметная линия учебников Ю.Н. Макарычева и др. 7-9 классы: пособие для учителей общеобразоват. учреждений / Н.Г. Миндюк. - М.: Просвещение, 2011. - 32 с.
- Алгебра. 8 класс: поурочные планы по учебнику Ю. Н. Макарычева и др./ авт.-сост. Т. Л. Афанасьева, Л. А. Тапилина. – Волгоград: Учитель, 2008.
- Живая математика. Учебно-методический комплект. Версия 4.3. Программа. Компьютерные альбомы. М: ИНТ.
- Живая математика: Сборник методических материалов. М: ИНТ. – 168 с.
- Виртуальная школа Кирилла и Мефодия. Уроки алгебры Кирилла и Мефодия. 7-8 классы, 2004.
Дидактические материалы:
- Алгебра: дидакт. Материалы для 8 кл./ Жохов В.И., Макарычев Ю.Н., Миндюк Н.Г. – 12-е изд., дораб. – М.: Просвещение, 2007.
- Воробьева Е. А. Алгебра. 8 класс. Проверочные работы с элементами тестирования. – Саратов: Лицей, 2008.
- Жохов В. И. Дидактические материалы по алгебре. 8 класс / В. И. Жохов, Ю. Н. Макарычев, Н. Г. Миндюк. – М.: Просвещение, 2009.
- Капитонова Т. А. Алгебра. 8 класс. Проверочные и контрольные работы. – Саратов: Лицей, 2008.
Интернет-ресурсы
1.http://www.it-n.ru/-Сеть творческих учителей
2. www.rustest.ru-Федеральный центр тестирования
3. http://mat.1september.ru/ – издательство «Первое сентября. Математика»;
4. http://festival.1september.ru/mathematics/ – педагогический форум: Фестиваль педагогических идей «Открытый урок».
5. http://www.mathgia.ru:8080/or/gia12/Main.html?view=TrainArchive-Открытый банк заданий по математике
6.www.fipi.ru-Федеральный институт педагогических измерений
МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ
компьютер, мультимедийный проектор, проекционный экран, диски
Организация учебного процесса также предполагает наличие минимального набора учебного оборудования, как для демонстрационных целей в классе, так и для индивидуального использования.
Минимальный набор демонстрационного учебного оборудования включает:
- демонстрационные плакаты, содержащие основные математические формулы, соотношения, законы, таблицы метрических мер, графики основных функций;
- демонстрационные наборы плоских и пространственных геометрических фигур, в том числе разъемные, модель координатной прямой и доска с координатной сеткой, классные линейки, угольники, транспортир, циркуль;
В наборах для индивидуального использования имеется: линейка, угольник, транспортир, циркуль, наборы плоских и пространственных геометрических фигур.
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ
В результате изучения математики ученик должен
знать/понимать[1]
- существо понятия математического доказательства; примеры доказательств;
- существо понятия алгоритма; примеры алгоритмов;
- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
- каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
АЛГЕБРА
уметь
- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
- выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
- применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
- решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
- решать линейные и квадратные неравенства с одной переменной и их системы;
- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
- определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
- моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
- описания зависимостей между физическими величинами, соответствующими формулами при исследовании несложных практических ситуаций;
- интерпретации графиков реальных зависимостей между величинами;
СПИСОК ИСТОЧНИКОВ
1. Федеральный Закон «Об образовании в Российской Федерации».
2. Федеральные государственные образовательные стандарты общего образования (ФГОС ОО).
3. Концепция духовно-нравственного развития и воспитания личности гражданина России в сфере общего образования.
4. Приказ Министерства труда и социальной защиты Российской Федерации от 18 октября 2013 г. № 544-н «Об утверждении профессионального стандарта «Педагог (педагогическая деятельность в сфере дошкольного, начального общего, основного общего, среднего общего образования) (воспитатель, учитель)».
5. Федеральный компонент государственного образовательного стандарта (ФК ГОС), утвержденного Приказом Минобразования РФ от 05. 03. 2004 года № 1089;
6. Примерные программы основного общего и среднего (полного) общего образования по математике (письмо Департамента государственной политики в образовании Министерства образования и науки Российской Федерации).
7. Приказ Министерства образования и науки «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2014 – 2017 учебный год».
8. Закон Республики Мордовия «Об образовании в Республике Мордовия».
9. Распоряжение правительства Российской Федерации «О Концепции развития математического образования в Российской Федерации».
10. Методические рекомендации по реализации Концепции математического образования в Республике Мордовия на 2014 – 2020 гг.
11. Устав гимназии.
Для учителя.
- Алгебра. 8 класс: поурочные планы по учебнику Ю. Н. Макарычева и др./ авт.-сост. Т. Л. Афанасьева, Л. А. Тапилина. – Волгоград: Учитель, 2008.
- Жохов В. И. Уроки алгебры в 8 классе: книга для учителя / В. И. Жохов, Г. Д. Карташева. – М.: Просвещение, 2009.
- Математика. Еженедельное приложение к газете «Первое сентября»;
- Математика в школе. Ежемесячный научно-методический журнал.
- Программы для общеобразовательных школ, лицеев и гимназий. Математика. Составители: Г. М. Кузнецова, Н. Г. Миндюк. М.: Дрофа, 2004 г.
Для учеников
- Алгебра: учеб. для 8 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; под ред. С. А. Теляковского. – 17-е изд. – М.: Просвещение, 2008.
Контрольные работы Алгебра 8 класс
Контрольная работа №1
В а р и а н т 1
1. Сократить дробь:
а) ; б) ; в) .
2. Представить в виде дроби:
а) ; б) ; в) .
3. Найти значение выражения:
при а = 0,2; b = –5.
4. Упростить выражение:
.
5. При каких целых значениях а является целым числом значение выражения ?
В а р и а н т 2
1. Сократить дробь:
а) ; б) ; в) .
2. Представить в виде дроби:
а) ; б) ; в) .
3. Найти значение выражения:
при х = –8, у = 0,1.
4. Упростить выражение:
.
5. При каких целых значениях b является целым числом значение выражения ?
Контрольная работа №2
В а р и а н т 1
1. Представьте в виде дроби:
а) ; б) ;
в) ; г) .
2. Постройте график функции y = . Какова область определения функции? При каких значениях х функция принимает отрицательные значения?
3. Докажите, что при всех значениях b ≠ ±1 значение выражения не зависит от b.
4. При каких значениях а имеет смысл выражение ?
В а р и а н т 2
1. Представьте в виде дроби:
а) ; б) ;
в) ; г) .
2. Постройте график функции y = . Какова область определения функции? При каких значениях х функция принимает положительные значения?
3. Докажите, что при всех значениях х ≠ ±2 значение выражения не зависит от х.
4. При каких значениях b имеет смысл выражение ?
Контрольная работа №3
В а р и а н т 1
1. Вычислите:
а) ; б) – 1; в) .
2. Найдите значение выражения:
а) ; б) ; в) ; г) .
3. Решите уравнение: а) х2 = 0,49; б) х2 = 10.
4. Упростите выражение:
а) , где х ≥ 0; б) , где b < 0.
5. Укажите две последовательные десятичные дроби с одним знаком после запятой, между которыми заключено число .
6. При каких значениях переменной а имеет смысл выражение ?
В а р и а н т 2
1. Вычислите:
а) ; б) ; в) .
2. Найдите значение выражения:
а) ; б) ; в) ; г) .
3. Решите уравнение: а) х2 = 0,64; б) х2 = 17.
4. Упростите выражение:
а) , где у ≥ 0; б) , где а < 0.
5. Укажите две последовательные десятичные дроби с одним знаком после запятой, между которыми заключено число .
6. При каких значениях переменной х имеет смысл выражение ?
Контрольная работа №4
В а р и а н т 1
1. Упростите выражение:
а) ; б) ; в) .
2. Сравните: и .
3. Сократите дробь:
а) ; б) .
4. Освободите дробь от знака корня в знаменателе:
а) ; б) .
5. Докажите, что значение выражения есть число рациональное.
6. При каких значениях а дробь принимает наибольшее значение?
В а р и а н т 2
1. Упростите выражение:
а) ; б) ; в) .
2. Сравните: и .
3. Сократите дробь:
а) ; б) .
4. Освободите дробь от знака корня в знаменателе:
а) ; б) .
5. Докажите, что значение выражения есть число рациональное.
6. При каких значениях х дробь принимает наибольшее значение?
КОНТРОЛЬНАЯ РАБОТА № 5
В а р и а н т 1
1. Решите уравнение:
а) 2х2 + 7х – 9 = 0; в) 100х2 – 16 = 0;
б) 3х2 = 18х; г) х2 – 16х + 63 = 0.
2. Периметр прямоугольника равен 20 см. Найдите его стороны, если известно, что площадь прямоугольника равна 24 см2.
3. В уравнении х2 + рх – 18 = 0 один из его корней равен –9. Найдите другой корень и коэффициент р.
В а р и а н т 2
1. Решите уравнение:
а) 3х2 + 13х – 10 = 0; в) 16х2 = 49;
б) 2х2 – 3х = 0; г) х2 – 2х – 35 = 0.
2. Периметр прямоугольника равен 30 см. Найдите его стороны, если известно, что площадь прямоугольника равна 56 см2.
3. Один из корней уравнения х2 + 11х + q = 0 равен –7. Найдите другой корень и свободный член q.
В а р и а н т 3
1. Решите уравнение:
а) 7х2 – 9х + 2 = 0; в) 7х2 – 28 = 0;
б) 5х2 = 12х; г) х2 + 20х + 91 = 0.
2. Периметр прямоугольника равен 26 см, а его площадь 36 см2. Найдите длины сторон прямоугольника.
3. В уравнении х2 + рх + 56 = 0 один из его корней равен –4. Найдите другой корень и коэффициент р.
КОНТРОЛЬНАЯ РАБОТА № 6
В а р и а н т 1
1. Решите уравнение:
а) ; б) = 3.
2. Из пункта А в пункт В велосипедист проехал по одной дороге длиной 27 км, а обратно возвращался по другой дороге, которая была короче первой на 7 км. Хотя на обратном пути велосипедист уменьшил скорость на 3 км/ч, он все же на обратный путь затратил времени на 10 минут меньше, чем на путь из А в В. С какой скоростью ехал велосипедист из А в В?
В а р и а н т 2
1. Решите уравнение:
а) ; б) = 2.
2. Катер прошёл 12 км против течения реки и 5 км по течению. При этом он затратил столько времени, сколько ему потребовалось бы, если бы он шёл 18 км по озеру. Какова собственная скорость катера, если известно, что скорость течения реки равна 3 км/ч.
КОНТРОЛЬНАЯ РАБОТА № 7
Р е к о м е н д а ц и и п о о ц е н и в а н и ю.
Для получения отметки «3» достаточно выполнить первые два задания. Для получения отметки «5» необходимо выполнить любые четыре задания. Если выполнены все пять заданий, учащийся может получить дополнительную оценку.
В а р и а н т 1
1. Докажите неравенство:
а) (x – 2)2 > x(x – 4); б) a2 + 1 ≥ 2(3a – 4).
2. Известно, что а < b. Сравните:
а) 21а и 21b; б) –3,2а и –3,2b; в) 1,5b и 1,5а.
Результат сравнения запишите в виде неравенства.
3. Известно, что 2,6 << 2,7. Оцените:
а) 2; б) –.
4. Оцените периметр и площадь прямоугольника со сторонами а см и b см, если известно, что 2,6 < а < 2,7, 1,2 < b < 1,3.
5. К каждому из чисел 2, 3, 4 и 5 прибавили одно и то же число а. Сравните произведение крайних членов получившейся последовательности с произведением средних членов.
В а р и а н т 2
1. Докажите неравенство:
а) (x + 7)2 > x(x + 14); б) b2 + 5 ≥ 10(b – 2).
2. Известно, что а > b. Сравните:
а) 18а и 18b; б) –6,7а и –6,7b; в) –3,7b и –3,7а.
Результат сравнения запишите в виде неравенства.
3. Известно, что 3,1 << 3,2. Оцените:
а) 3; б) –.
4. Оцените периметр и площадь прямоугольника со сторонами а см и b см, если известно, что 1,5 < а < 1,6, 3,2 < b < 3,3.
5. Даны четыре последовательных натуральных числа. Сравните произведение первого и последнего из них с произведением двух средних чисел.
КОНТРОЛЬНАЯ РАБОТА № 9
В а р и а н т 1
1. Найдите значение выражения:
а) 411 · 4–9; б) 6–5 : 6–3; в) (2–2)3.
2. Упростите выражение:
а) ; б) .
3. Преобразуйте выражение:
а) ; б) .
4. Вычислите: .
5. Представьте произведение (4,6 · 104) · (2,5 · 10–6) в стандартном виде числа.
6. Представьте выражение (a–1 + b–1)(a + b)–1 в виде рациональной дроби.
В а р и а н т 2
1. Найдите значение выражения:
а) 5–4 · 52; б) 12–3 : 12–4; в) (3–1)–3.
2. Упростите выражение:
а) ; б) .
3. Преобразуйте выражение:
а) ; б) .
4. Вычислите: .
5. Представьте произведение (3,5 · 10–5) · (6,4 · 102) в стандартном виде числа.
6. Представьте выражение в виде рациональной дроби.
ИТОГОВАЯ КОНТРОЛЬНАЯ РАБОТА
В а р и а н т 1
1. Решите систему неравенств:
2. Упростите выражение: .
3. Упростите выражение: .
4. Два автомобиля выезжают одновременно из одного города в другой, находящийся на расстоянии 560 км. Скорость первого на 10 км/ч больше скорости второго, и поэтому первый приезжает на место на 1 ч раньше второго. Определите скорость каждого автомобиля.
5. При каких значениях х функция y = + 1 принимает положительные значения?
В а р и а н т 2
1. Решите систему неравенств:
2. Упростите выражение: .
3. Упростите выражение: .
4. Пассажирский поезд был задержан в пути на 16 мин и нагнал опоздание на перегоне в 80 км, идя со скоростью, на 10 км/ч большей, чем полагалось по расписанию. Какова была скорость поезда по расписанию?
5. При каких значениях х функция y = – 2 принимает отрицательные значения?
Критерии и нормы оценки знаний, умений и навыков обучающихся
Опираясь на эти рекомендации, учитель оценивает знания, умения и навыки учащихся с учетом их индивидуальных особенностей.
- Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.
- Основными формами проверки знаний и умений, учащихся по математике являются письменная контрольная работа и устный опрос.
- Среди погрешностей выделяются ошибки и недочеты.
Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями, указанными в программе.
К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, которые в программе не считаются основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения: неаккуратная запись, небрежное выполнение чертежа.
- Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.
Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.
Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно, выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.
- Оценка ответа учащихся при устном и письменном опросе производится по пятибалльной системе.
- Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося, за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им задания.
- Итоговые отметки (за тему, четверть, курс) выставляются по состоянию знаний на конец этапа обучения с учетом текущих отметок.
Оценка устных ответов учащихся.
Ответ оценивается отметкой «5», если ученик:
- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
- изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
- продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость использованных при ответе умений и навыков;
- отвечал самостоятельно без наводящих вопросов учителя.
Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.
Ответ оценивается отметкой «4», если он удовлетворен в основном требованиям на отметку «5», но при этом имеет один из недостатков:
- в изложении допущены небольшие пробелы, не исказившие математического содержания ответа, исправленные по замечанию учителя.
- допущены ошибки или более двух недочетов при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.
Отметка «3» ставится в следующих случаях:
- неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»).
- имелись затруднения или допущены ошибки в определении понятий и, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
- при знании теоретического материала выявлена недостаточная сформированность умений и навыков.
Отметка «2» ставится в следующих случаях:
- не раскрыто основное содержание учебного материала;
- обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Оценка «1» ставится в случае, если:
- ученик обнаружил полное незнание и непонимание изучаемого материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.
Оценка письменных контрольных работ учащихся.
Отметка «5» ставится в следующих случаях:
- работа выполнена полностью.
- в логических рассуждениях и обоснованиях нет пробелов и ошибок;
- в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала);
Отметка «4» ставится, если:
- работа выполнена полностью, но обоснования шагов решения недостаточны (если умения обосновывать рассуждения не являлись специальным объектом проверки);
- допущена одна ошибка или два-три недочета в выкладках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки);
Отметка «3» ставится, если:
- допущены более одной ошибки или более двух- трех недочетов в выкладках, чертежах или графика, но учащийся владеет обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
- допущены существенные ошибки, показавшие, что учащийся не владеет обязательными знаниями по данной теме в полной мере.
Отметка «1» ставится, если:
работа показала полное отсутствие у учащегося обязательных знаний, умений по проверяемой теме или значительная часть работы выполнена не самостоятельно
[1] Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.
Предварительный просмотр:
№ п/п | Наименование разделов и тем | Максимальная нагрузка учащегося, ч. | Из них | ||||
Теория ч. | Практическая часть | ||||||
Конт. раб. | Самост. работы
| Тесты | ИКТ | ||||
I. | Рациональные дроби | 23 | 20 | 2 | 7 | 2 | 3 |
II. | Квадратные корни | 19 | 14 | 2 | 5 | 4 | 2 |
III. | Квадратные уравнения | 20 | 18 | 2 | 6 | 4 | 3 |
IV. | Неравенства | 20 | 18 | 2 | 5 | 3 | 4 |
V | Степень с целым показателем. Элементы статистики | 11 | 10 | 1 | 2 | 2 | 3 |
VI | Повторение | 9 | - | 1 | 1 | 1 | 2 |
Итого | 102 | 80 | 12 | 28 | 16 | 17 |
Тематическое планирование по дисциплине «Алгебра»
Календарно - тематический план по дисциплине «Алгебра»
№ п/п | Наименование разделов и тем | Максимальная нагрузка учащегося, ч. | Из них | Планир.дата | Фактич.дата | ||||
Теория ч. | Практическая часть | ||||||||
Контр. раб.
| Самост. работы | Тесты | ИКТ | ||||||
1. | Рациональные дроби | 23 | 20 | 2 | 7 | 2 | |||
1.1. | Рациональные выражения | + | 2.09.15 | ||||||
1.2 | Рациональные выражения | + | 5.09.15 | ||||||
1.3 | Рациональные выражения | + | 7.09.15 | ||||||
.1.4 | Основное свойство дроби. Сокращение дробей | + | 9.09.15 | ||||||
1.5 | Основное свойство дроби. Сокращение дробей | + | 12.09.15 | ||||||
1.6 | Основное свойство дроби. Сокращение дробей | 14.09.15 | |||||||
1.7 | Сложение и вычитание дробей с одинаковыми знаменателями | 16.09.15 | |||||||
1.8 | Сложение и вычитание дробей с одинаковыми знаменателями | + | 19.09.15 | ||||||
1.9 | Сложение и вычитание дробей с разными знаменателями | + | 21.09.15 | ||||||
1.10 | Сложение и вычитание дробей с разными знаменателями | 23.09.15 | |||||||
1.11 | Сложение и вычитание дробей с разными знаменателями | + | 26.09.15 | ||||||
1.12 | Контрольная работа №1 | + | 28.09.15 | ||||||
1.13 | Анализ контрольной работы. Умножение дробей. Возведение дробей в степень. | 30.09.15 | |||||||
1.14 | Умножение дробей. Возведение дробей в степень | 3.10.15 | |||||||
1.15 | Деление дробей | + | 5.10.15 | ||||||
1.16 | Деление дробей | + | 7.10.15 | ||||||
1.17 | Преобразование рациональных выражений. | Практ. раб | 10.10.15 | ||||||
1.18 | Преобразование рациональных выражений. | Практ. раб | 12.10.15 | ||||||
1.19 | Преобразование рациональных выражений. | Практ. раб | 14.10.15 | ||||||
1.20 | Преобразование рациональных выражений. | Практ. раб | 17.10.15 | ||||||
1.21 | Функция и ее график | + | + | 19.10.15 | |||||
1.22 | Функция и ее график | 21.10.15 | |||||||
1.23 | Контрольная работа №2 | + | 24.10.15 | ||||||
2 | Квадратные корни | 19 | 16 | 2 | 5 | 4 | |||
2.1 | Анализ контрольной работы. Рациональные числа | + | 26.10.15 | ||||||
2.2 | Иррациональные числа | 28.10.15 | |||||||
2.3 | Квадратные корни. Арифметический квадратный корень. | 31.10.15 | |||||||
2.4 | Квадратные корни. Арифметический квадратный корень. | + | 9.11.15 | ||||||
2.5 | Уравнение | 11.11.15 | |||||||
2.6 | Нахождение приближенных значений квадратного корня | + | 14.11.15 | ||||||
2.7 | Функция и ее график | Практ раб | + | 16.11.15 | |||||
2.8 | Функция и ее график | + | 18.11.15 | ||||||
2.9 | Квадратный корень из произведения и дроби | 21.11.15 | |||||||
2.10 | Квадратный корень из произведения и дроби | + | 23.11.15. | ||||||
2.11 | Квадратный корень из произведения и дроби | + | 25.11.15 | ||||||
2.12 | Контрольная работа №3 «Свойства арифметического корня» | + | 28.11.15 | ||||||
2.13 | Анализ контрольной работы. Вынесение множителя за знак корня. Внесение множителя под знак корня | + | 30.11.15 | ||||||
2.14 | Вынесение множителя за знак корня. Внесение множителя под знак корня | + | 2.12.15 | ||||||
2.15 | Преобразование выражений, содержащих квадратные корни. | + | 5.12.15 | ||||||
2.16 | Преобразование выражений, содержащих квадратные корни. | 7.12.15 | |||||||
2.17 | Преобразование выражений, содержащих квадратные корни. | 9.12.15 | |||||||
2.18 | Преобразование выражений, содержащих квадратные корни. | + | 12.12.15 | ||||||
2.19 | Контрольная работа №4 «Применение свойств квадратного корня» | + | 14.12.15 | ||||||
3 | Квадратные уравнения | 20 | 18 | 3 | 6 | 4 | |||
3.1 | Анализ контрольной работы. Определение квадратного корня. Неполные квадратные уравнения. | 16.12.15 | |||||||
3.2 | Определение квадратного корня. Неполные квадратные уравнения. | + | 19.12.15 | ||||||
3.3 | Формула корней квадратного уравнения | + | 21.12.15 | ||||||
3.4 | Формула корней квадратного уравнения | 23.12.15 | |||||||
3.5 | Формула корней квадратного уравнения | + | 26.12.15 | ||||||
3.6 | Решение задач с помощью квадратных уравнений | + | 11.01.16 | ||||||
3.7 | Решение задач с помощью квадратных уравнений | + | 13.01.16 | ||||||
3.8 | Теорема Виета | + | 16.01.16 | ||||||
3.9 | Теорема Виета | + | 18.01.16 | ||||||
3.10 | Контрольная работа №5 «Квадратные уравнения» | 20.01.16 | |||||||
3.11 | Анализ контрольной работы. Решение дробных рациональных уравнений | 23.01.16 | |||||||
3.12 | Решение дробных рациональных уравнений | + | 25.01.16 | ||||||
3.13 | Решение дробных рациональных уравнений | 27.01.16 | |||||||
3.14 | Решение дробных рациональных уравнений | + | 30.01.16 | ||||||
3.15 | Решение задач с помощью рациональных уравнений | 1.02.16 | |||||||
3.16 | Решение задач с помощью рациональных уравнений | + | 3.02.16 | ||||||
3.17 | Решение задач с помощью рациональных уравнений | + | 6.02.16 | ||||||
3.18 | Решение задач с помощью рациональных уравнений | + | 8.02.16 | ||||||
3.19 | Уравнения с параметрами | + | 10.02.16 | ||||||
3.20 | Контрольная работа №6 «Произведение и частное дробей» | + | 13.02.16 | ||||||
4 | Неравенства | 20 | 18 | 2 | 5 | 3 | |||
4.1 | Анализ контрольной работы. Числовые неравенства | 15.02.16 | |||||||
4.2 | Числовые неравенства | 17.02.16 | |||||||
4.3 | Свойства числовых неравенств | + | + | 20.02.16 | |||||
4.4 | Свойства числовых неравенств | + | 22.02.166 | ||||||
4.5 | Сложение и умножение числовых неравенств | 27.02.16 | |||||||
4.6 | Сложение и умножение числовых неравенств | + | 29.02.16 | ||||||
4.7 | Погрешность и точность приближения | + | 2.03.16 | ||||||
4.8 | Контрольная работа №7 по теме «Неравенства» | + | 5.03.16 | ||||||
4.9 | Анализ контрольной работы. Пересечение и объединение множеств. Числовые промежутки | + | 7.03.16 | ||||||
4.10 | Пересечение и объединение множеств. Числовые промежутки | + | 12.03.16 | ||||||
4.11 | Решение неравенств с одной переменной | + | 14.03.16 | ||||||
4.12 | Решение неравенств с одной переменной | + | 16.03.16 | ||||||
4.13 | Решение неравенств с одной переменной | 19.03.16 | |||||||
4.14 | Решение неравенств с одной переменной | + | 21.03.16 | ||||||
4.15 | Решение систем неравенств с одной переменной | 23.03.16 | |||||||
4.16 | Решение систем неравенств с одной переменной | 2.04.16 | |||||||
4.17 | Решение систем неравенств с одной переменной | + | 4.04.16 | ||||||
4.18 | Решение систем неравенств с одной переменной. Доказательство неравенств | 6.04.16 | |||||||
4.19 | Решение систем неравенств с одной переменной. Доказательство неравенств | + | 9.04.16 | ||||||
4.20 | Контрольная работа №8 по теме «Неравенства» | + | 11.04.16 | ||||||
5 | Степень целым показателем. Элементы статистики | 11 | 10 | 1 | 2 | 2 | |||
5.1 | Анализ контрольной работы. Определение степени с целым отрицательным показателем | + | 13.04.16 | ||||||
5.2 | Определение степени с целым отрицательным показателем | 16.04.16 | |||||||
5.3 | Свойства степени с целым показателем | + | 18.04.16 | ||||||
5.4 | Свойства степени с целым показателем | + | 20.04.16 | ||||||
5.5 | Стандартный вид числа | + | 23.04.16 | ||||||
5.6 | Стандартный вид числа | + | 25.04.16 | ||||||
5.7 | Контрольная работа №9 по теме «Свойства степени» | + | 27.04.16 | ||||||
5.8 | Сбор и группировка статистических данных | 30.04.16 | |||||||
5.9 | Сбор и группировка статистических данных | 4.05.16 | |||||||
5.10 | Наглядное представление статистической информации | + | + | 7.05.16 | |||||
5.11 | Наглядное представление статистической информации | 11.05.16 | |||||||
6 | Повторение | 9 | 1 | 1 | 1 | ||||
6.1 | Повторение по теме «Рациональные дроби» | + | 13.05.16 | ||||||
6.2 | Повторение по теме «Квадратные корни и квадратные уравнения» | 17.05.16 | |||||||
6.3 | Повторение по теме «Квадратные корни и квадратные уравнения» | + | |||||||
6.4 | Повторение по теме «Решение задач с помощью составления квадратных уравнений» | 18.05.16 | |||||||
6.5 | Повторение по теме «Решение задач с помощью составления квадратных уравнений» | 21.05.16 | |||||||
6.6 | Повторение по теме «Неравенства» | 23.05.16 | |||||||
6.7 | Повторение по теме «Неравенства» | 25.05. 16 | |||||||
6.8 | Итоговая контрольная работа | + | 28.05.16 | ||||||
6.9 | Анализ контрольной работы. Обобщение изученного материала | 30.05.16 | |||||||
Итого | 102 | ||||||||
По теме: методические разработки, презентации и конспекты
Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2010.
Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Т...
Рабочая программа по алгебре 9класс Макарычев Ю.Н
Рабочая программа по алгебре в 9 классе учебник Ю.Н.Макарычев, календарно тематическое планирование....
Рабочая программа по алгебре 8-9 классы (базовый уровень) к УМК Алгебра 8. Алгебра 9. Макарычев Ю. Н., Миндюк Н.Г. и др
Содержание рабочей программы: Пояснительная записка. Содержание курса. Тематический план. Ожидаемые результаты. Календарно-тематическое планирование. Рабочая программа составлена на основе: - Феде...
РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ Класс: 8 (базовый уровень)
Тематический план по алгебре разработан в соответствии с Примерной программой основного общего образования по математике, с учетом требований федерального компонента государственного...
рабочая программа алебра 7 класс макарычев (102 часа)
рабочая программа алебра 7 класс макарычев (102 часа)...
РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс 9 Учитель Асессорова Е.М.
РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс...
РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс 11 Учитель Асессорова Е.М.
РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс 11 Учитель Асессорова Е.М...