Программа элективного курса "Решение уравнений и неравенств", 10 класс
рабочая программа по алгебре (10 класс) на тему

Чухломина Ирина Сергеевна

Программа элективного курса  «Решение уравнений и неравенств» составлена  на основе авторской программы Д.Ф.Айвазяна (Математика 10-11 классы. Решение уравнений и неравенств с параметрами: элективный курс / авт.-сост. Д.Ф.Айвазян. image Волгоград: Учитель, 2009.image204 с).

Элективный курс является предметно-ориенти­рованным и предназначен на один год обучения для реализации в 10 классах общеобразовательной школы для расширения теоретических и практических знаний учащихся.

ВВЕДЕНИЕ

Изучение многих физических процессов и геометрических за­кономерностей часто приводит к решению задач с параметрами. Наиболее трудной и важной частью решения таких задач является исследование процесса в зависимости от параметров.

Задачи с параметрами включены в содержание ЕГЭ по матема­тике и очень часто оказываются не по силам обучающимся. Это, вообще говоря, неудивительно, поскольку у большинства учащихся нет должной свободы в общении с параметрами.

Появление таких задач на экзамене далеко не случайно, так как с их помощью проверяется техника владения формулами элемен­тарной математики, методами решения уравнений и неравенств, умение выстраивать логическую цепочку рассуждений (без чего решение задач с параметрами невозможно) и уровень логического мышления учащихся.

Необходимость введения элективного курса «Решение уравне­ний и неравенств» обусловлена тем, что практика вступительных экзаменов далеко оторвалась от школы и достаточ­но велика разница между требованиями, которые предъявляет к своему выпускнику школа, и требованиями, которые предъявляет к своему поступающему вуз, особенно вуз высокого уровня. В процессе решения задач с параметрами приобретаются определенные умения исследовательской работы.

Цель курса – научить учащихся методам решения задач с параметрами, помочь преодолеть психологический барьер, который обусловлен противоречивыми характеристиками парамет­ра. С одной стороны, параметр в уравнении следует считать величи­ной известной, а с другой - конкретное значение параметра неиз­вестно. С одной стороны, параметр является величиной постоянной, а с другой – может принимать различные значения. Получается, что параметр - неизвестная известная, переменная постоянная величина.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Предлагаемый элективный курс «Решение уравнений и не­равенств» составлен на основе авторской программы Д.Ф.Айвазяна с одноименным названием и является предметно-ориенти­рованным и предназначен на один год обучения для реализации в 10 классах общеобразовательной школы для расширения теоретических и практический знаний  учащихся. Решение уравнений, содержа­щих параметры,  разделов школьного кур­са. Запланированный данной программой для усвоения учащи­мися объем знаний необходим для овладения ими методами ре­шения некоторых классов заданий с параметрами, для обобще­ния теоретических знаний. В процессе решения задач с параметрами приобретаются определенные умения исследовательской работы. Трудности при решении задач с параметрами обусловлены тем, что наличие параметра заставляет решать задачу не по шаблону, а рассматривать различные случаи, при каждом из которых методы решения существенно отличаются друг от друга. Так же необходимо хорошо знать свойства функций и выделять те, которые нужно применять в конкретном случае.

Целью данного курса является изучение избранных классов уравнений с параметрами и научное обоснование методов их решения, а также формирование логического мышления и мате­матической культуры у школьников.

Курс имеет общеобразова­тельное значение, способствует развитию логического мышле­ния учащихся. Программа данного элективного курса ориенти­рована на приобретение определенного опыта решения задач. Курс входит в число дисциплин, включенных в компонент учебного плана образовательного учреждения. Изу­чение данного курса тесно связано с такими дисциплинами, как алгебра, алгебра и начала анализа, геометрия.

В результате курса учащиеся должны научиться применять теоретические знания при решении уравнений и неравенств, знать некоторые методы решения заданий с парамет­рами (по определению, по свойствам функций, графически и т. д.)

Данный курс представляется особенно актуальным и совре­менным, так как расширяет и систематизирует знания учащихся, готовит их к более осмысленному пониманию теоретических сведений.

Данный курс имеет существенное образовательное значение для изучения алгебры.

Задачи курса:

·                овладение системой знаний об уравнениях с параметром как о семействе уравнений, что исключительно важно для целостного осмысления свойств уравнений и неравенств, их особенностей;

·                овладение аналитическим и графическими способами решения задач с параметром;

·                приобретение исследовательских навыков в решении задач с параметрами;

·                формированию логического мышления учащихся;

·                вооружению учащихся специальными и общеучебными знаниями, позволяющими им самостоятельно добывать знания по данному курсу;

·                подготовка учащихся к сдаче ЕГЭ и поступлению в ВУЗы.

Содержание курса предполагает работу с различными ис­точниками математической литературы. Содержание каждой темы элективного курса включает в себя самостоятельную рабо­ту учащихся.

Данный курс рассчитан на 34 часа (по 1 часу в неделю) и содержит следую­щие основные разделы: 

Скачать:

ВложениеРазмер
Файл reshenie_uravneniy_i_neravenstv_10_klass.docx43.91 КБ

Предварительный просмотр:

Муниципальное бюджетное  общеобразовательное учреждение

«Клюквинская средняя общеобразовательная школа- интернат»

Верхнекетского района Томской области

РАССМОТРЕНА

на заседании педагогического/методического совета

Руководитель МО

___________ Сморкалова Г.А

Протокол № 1 от «27».08.2015г.

СОГЛАСОВАНА

Заместитель директора по УМР МБОУ «Клюквинская СОШИ»

___________ Омельчук Е.И.

«29» .08. 2015г.

УТВЕРЖДЕНА

И.О. директора

 МБОУ «Клюквинская СОШИ»

_____________ Чумаченко Т.И.

Приказ № ___ от «__».___.2015г.

Рабочая программа факультативного курса «Решение уравнений и неравенств»  для  10 класса

и календарно-тематическое планирование

на  2015-2016 учебный год

Составитель:

Бурачкова Ирина Сергеевна

Программа элективного курса  «Решение уравнений и неравенств» составлена  на основе авторской программы Д.Ф.Айвазяна (Математика 10-11 классы. Решение уравнений и неравенств с параметрами: элективный курс / авт.-сост. Д.Ф.Айвазян.  Волгоград: Учитель, 2009.204 с).

Элективный курс является предметно-ориентированным и предназначен на один год обучения для реализации в 10 классах общеобразовательной школы для расширения теоретических и практических знаний учащихся.

ВВЕДЕНИЕ

Изучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами. Наиболее трудной и важной частью решения таких задач является исследование процесса в зависимости от параметров.

Задачи с параметрами включены в содержание ЕГЭ по математике и очень часто оказываются не по силам обучающимся. Это, вообще говоря, неудивительно, поскольку у большинства учащихся нет должной свободы в общении с параметрами.

Появление таких задач на экзамене далеко не случайно, так как с их помощью проверяется техника владения формулами элементарной математики, методами решения уравнений и неравенств, умение выстраивать логическую цепочку рассуждений (без чего решение задач с параметрами невозможно) и уровень логического мышления учащихся.

Необходимость введения элективного курса «Решение уравнений и неравенств» обусловлена тем, что практика вступительных экзаменов далеко оторвалась от школы и достаточно велика разница между требованиями, которые предъявляет к своему выпускнику школа, и требованиями, которые предъявляет к своему поступающему вуз, особенно вуз высокого уровня. В процессе решения задач с параметрами приобретаются определенные умения исследовательской работы.

Цель курса – научить учащихся методам решения задач с параметрами, помочь преодолеть психологический барьер, который обусловлен противоречивыми характеристиками параметра. С одной стороны, параметр в уравнении следует считать величиной известной, а с другой - конкретное значение параметра неизвестно. С одной стороны, параметр является величиной постоянной, а с другой – может принимать различные значения. Получается, что параметр - неизвестная известная, переменная постоянная величина.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Предлагаемый элективный курс «Решение уравнений и неравенств» составлен на основе авторской программы Д.Ф.Айвазяна с одноименным названием и является предметно-ориентированным и предназначен на один год обучения для реализации в 10 классах общеобразовательной школы для расширения теоретических и практический знаний  учащихся. Решение уравнений, содержащих параметры,  разделов школьного курса. Запланированный данной программой для усвоения учащимися объем знаний необходим для овладения ими методами решения некоторых классов заданий с параметрами, для обобщения теоретических знаний. В процессе решения задач с параметрами приобретаются определенные умения исследовательской работы. Трудности при решении задач с параметрами обусловлены тем, что наличие параметра заставляет решать задачу не по шаблону, а рассматривать различные случаи, при каждом из которых методы решения существенно отличаются друг от друга. Так же необходимо хорошо знать свойства функций и выделять те, которые нужно применять в конкретном случае.

Целью данного курса является изучение избранных классов уравнений с параметрами и научное обоснование методов их решения, а также формирование логического мышления и математической культуры у школьников.

Курс имеет общеобразовательное значение, способствует развитию логического мышления учащихся. Программа данного элективного курса ориентирована на приобретение определенного опыта решения задач. Курс входит в число дисциплин, включенных в компонент учебного плана образовательного учреждения. Изучение данного курса тесно связано с такими дисциплинами, как алгебра, алгебра и начала анализа, геометрия.

В результате курса учащиеся должны научиться применять теоретические знания при решении уравнений и неравенств, знать некоторые методы решения заданий с параметрами (по определению, по свойствам функций, графически и т. д.)

Данный курс представляется особенно актуальным и современным, так как расширяет и систематизирует знания учащихся, готовит их к более осмысленному пониманию теоретических сведений.

Данный курс имеет существенное образовательное значение для изучения алгебры.

Задачи курса:

  • овладение системой знаний об уравнениях с параметром как о семействе уравнений, что исключительно важно для целостного осмысления свойств уравнений и неравенств, их особенностей;
  • овладение аналитическим и графическими способами решения задач с параметром;
  • приобретение исследовательских навыков в решении задач с параметрами;
  • формированию логического мышления учащихся;
  • вооружению учащихся специальными и общеучебными знаниями, позволяющими им самостоятельно добывать знания по данному курсу;
  • подготовка учащихся к сдаче ЕГЭ и поступлению в ВУЗы.

Содержание курса предполагает работу с различными источниками математической литературы. Содержание каждой темы элективного курса включает в себя самостоятельную работу учащихся.

Данный курс рассчитан на 34 часа (по 1 часу в неделю) и содержит следующие основные разделы:

Введение. Понятие уравнений с параметрами. Первое знакомство с уравнениями, содержащими параметр:

  1. Линейные уравнения, неравенства и их системы.
  2. Квадратные уравнения и неравенства.
  3. Аналитические и геометрические приемы решения задач с параметрами.
  4. Решение различных видов уравнений и неравенств с параметрами.


Задачи программы:

  • познакомиться с понятиями «параметр», «уравнение с параметром», «неравенство с параметром», «система уравнений с параметром», «система неравенств с параметром».
  • различать условия параметрических задач;
  • научиться решать уравнения, неравенства, системы уравнений и неравенств с параметром аналитическим и графическим способами;
  • научиться математически грамотно оформлять решение задач с параметром.


Ожидаемые результаты

Учащийся
должен знать:

  • понятие параметра;
  • что значит решить уравнение с параметром, неравенство с параметром, систему уравнений и неравенств с параметром;
  • основные способы решения различных уравнений, неравенств и систем уравнений и неравенств с параметром (линейных и квадратных);
  • алгоритмы решений задач с параметрами;
  • зависимость количества решений неравенств, уравнений и их систем от значений параметра свойства решений уравнений, неравенств и их систем;
  • свойства функций в задачах с параметрами.


Учащийся
должен уметь:

  • определять вид уравнения (неравенства) с параметром;
  • выполнять равносильные преобразования;
  • применять аналитический или функционально-графический способы для решения задач с параметром;
  • осуществлять выбор метода решения задачи и обосновывать его;
  • использовать в решении задач с параметром свойства основных функций;
  • выбирать и записывать ответ;
  • решать линейные, квадратные уравнения и неравенства; несложные иррациональные, тригонометрические, показательные и логарифмические уравнения и неравенства с одним параметром при всех значениях параметра.


Учащийся
должен владеть:

  • анализом и самоконтролем;
  • исследованием ситуаций, в которых результат принимает те или иные количественные или качественные формы.


Изучение данного курса
дает учащимся возможность:

  • повторить и систематизировать ранее изученный материал школьного курса математики;
  • освоить основные приемы решения задач;
  • овладеть навыками построения и анализа предполагаемого решения поставленной задачи;
  • познакомиться и использовать на практике нестандартные методы решения задач;
  • повысить уровень своей математической культуры, творческого развития, познавательной активности;
  • познакомиться с возможностями использования электронных средств обучения, в том числе Интернет-ресурсов;
  • усвоить основные приемы и методы решения уравнений, неравенств, систем уравнений с параметрами;
  • применять алгоритм решения уравнений, неравенств, содержащих параметр;
  • проводить полное обоснование при решении задач с параметрами;
  • овладеть исследовательской деятельностью.


Формы работы: лекционно-семинарская, групповая и индивидуальная.
Методы работы: исследовательский и частично-поисковый.
Виды деятельности на занятиях: лекция, беседа, практикум, консультация, работа с компьютером.

При решении задач с параметрами одновременно активно реализуются основные методические принципы:

  • принцип параллельности – следует постоянно держать в поле зрения несколько тем, постепенно продвигаясь по ним вперед и вглубь;
  • принцип вариативности – рассматриваются различные приемы и методы решения с различных точек зрения: стандартность и оригинальность, объем вычислительной и исследовательской работы;
  • принцип самоконтроля – невозможность подстроиться под ответ вынуждает делать регулярный и систематический анализ своих ошибок и неудач;
  • принцип регулярности – увлеченные математикой дети с удовольствием дома индивидуально исследуют задачи, т. е. занятия математикой становятся регулярными, а не от случая к случаю на уроках.
  • принцип последовательного нарастания сложности. 

СОДЕРЖАНИЕ ОСНОВНЫХ РАЗДЕЛОВ

Введение. Понятие уравнений с параметрами. Первое знакомство с уравнениями с параметром.
Тема 1. Линейные уравнения, их системы и неравенства с параметром.

Линейные уравнения с параметром. Алгоритм решения линейных уравнений с параметром. Решение линейных уравнений с параметрами. Зависимость количества корней в зависимости от коэффициентов а и b. Решение уравнений с параметрами при наличии дополнительных условий к корням уравнения. Решение уравнений с параметрами, приводимых к линейным. Линейные неравенства с параметрами. Решение линейных неравенств с параметрами. Классификация систем линейных уравнений по количеству решений (неопределенные, однозначные, несовместные). Понятие системы с параметрами. Алгоритм решения систем линейных уравнений с параметрами. Параметр и количество решений системы линейных уравнений.

Тема 2. Квадратные уравнения и неравенства.

Понятие квадратного уравнения с параметром. Алгоритмическое предписание решения Квадратных уравнений с параметром. Решение квадратных уравнений с параметрами. Зависимость, количества корней уравнения от коэффициента а и дискриминанта. Решение с помощью графика. Применение теоремы Виета при решении квадратных уравнений с параметром. Решение квадратных уравнений с параметрами при наличии дополнительных условий к корням уравнения. Расположение корней квадратичной функции относительно заданной точки. Задачи, сводящиеся к исследованию расположения корней квадратичной функции. Решение квадратных уравнений с параметром первого типа («для каждого значения параметра найти все решения уравнения»). Решение квадратных уравнений второго типа («найти все значения параметра, при каждом из которых уравнение удовлетворяет заданным условиям»). Решение квадратных неравенств с параметром первого типа. Решение квадратных неравенств с параметром второго типа.

Тема 3. Аналитические и геометрические приемы решения задач с параметрами.

Использование графических иллюстраций в задачах с параметрами. Использование ограниченности функций, входящих в левую и правую части уравнений и неравенств. Использование симметрии аналитических выражений. Метод решения относительно параметра. Применение равносильных переходов при решении уравнений и неравенств с параметром.

Тема 4. Решение различных видов уравнений и неравенств с параметрами.

Решение тригонометрических уравнений, неравенств с параметром. Решение логарифмических уравнений, неравенств с параметром. Решение иррациональных уравнений, неравенств с параметром.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО СОДЕРЖАНИЮ И ПРОВЕДЕНИЮ ЗАНЯТИЙ

Введение. Понятие уравнений с параметрами. Первое знакомство с уравнениями с параметром.

Элективный курс целесообразно начать с вводного (организационного) занятия, где учитель знакомит учащихся с содержанием и структурой курса, объемом и видом самостоятельных работ, а также формой итоговой работы, которую они выполнят в конце изучения курса. На первом занятии рекомендуется предложить учащимся темы и обсудить их для выступлений на практических занятиях.

Во второй части вводного занятия рекомендуется перейти к раскрытию понятий уравнения с параметром как семейства уравнений, равносильности уравнений, понятия уравнения с параметром, рассмотреть примеры задач, приводящих к уравнению с параметром и решения некоторых уравнений с параметром.

Тема 1. Линейные уравнения, их системы и неравенства с параметром.

При изучении темы на уроке дается понятие линейных уравнений с параметром, рассматриваются три случая зависимости количества корней от значения коэффициентов а и b. Здесь же необходимо начать решение уравнений с параметрами при наличии дополнительных условий к корням уравнения.

На последующих уроках необходимо рассмотреть понятие линейных неравенств с параметрами, на практическом занятии необходимо повторить свойства линейных неравенств и использовать их при решении линейных неравенств с параметрами.

Ввести классификацию систем линейных уравнений по количеству решений (неопределенные, однозначные), дать понятие системы с параметрами и алгоритм решения систем линейных уравнений с параметрами.

Тема 2. Квадратные уравнения и неравенства.

Данная тема – самая главная и основная тема курса, именно здесь отводится больше часов для изучения, на уроках необходимо ввести понятие квадратного уравнения с параметром, обратив внимание на неравенство нулю коэффициента а, рассмотреть зависимость корней уравнения от коэффициента а и дискриминанта, записать алгоритм решения квадратных уравнений с параметром. На практическом занятии целесообразно рассмотреть решение квадратных уравнений с параметрами при наличии дополнительных условий к корням уравнения.

В содержании данной темы раскрываются теоретические сведения о нахождении корней квадратного трехчлена в зависимости от значений параметров. Учащиеся должны представлять, как может проходить график параболы в том или ином случае.

Тема 3. Аналитические и геометрические приемы и методы решения задач с параметрами.

На этих уроках нужно рассмотреть различные приемы и методы решения уравнений с параметрами. Учащиеся должны понимать, что красота и краткость решения зачастую зависят от выбора пути решения задания. Необходимо подчеркнуть, какие именно задачи удобнее всего решать графическим методом.

Тема 4. Решение различных видов уравнений и неравенств с параметрами.

Обобщение и систематизация знаний учащихся в ходе решения задач различного типа. Эти уроки предполагается проводить в виде практикумов.

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Номер урока

Раздел курса

Тема урока

Кол-во часов

Элементы содержания

Формы контроля (измерители)

Дата проведения

Дата проведения

1

2

3

4

5

6

7

8

1

Введение (1ч)

Понятие уравнения с параметрами

1

Понятие уравнений с параметрами. Первое знакомство с уравнениями с параметром

8.09

2

Линейные уравнения, их системы и неравенства с параметром

(12 ч)

Решение линейных уравнений с параметрами

2

Линейные уравнения с параметром. Алгоритм решения линейных уравнений с параметром

Тест

15.09

'

3

Решение линейных уравнений с параметрами

Зависимость количества корней от значения коэффициентов а и в. Решение линейных уравнений с параметрами

Самостоятельная

работа

22.09

4

Решение

линейных уравнений с параметрами при наличии дополнительных условий (ограничений) к корням уравнений

1

Решение уравнении с параметрами при наличии дополнительных условий к корням уравнения

Самостоятельная

работа

29.09

5

Решение

уравнении, приводимых к линейным

2

Решение уравнений с параметрами, приводимых к линейным

6.10

6

Решение

уравнении, приводимых к линейным

Самостоятельная

работа

13.10

7

Решение

систем линейных уравнений (с двумя переменными) с параметрами

3

Классификация систем линейных уравнений по количеству решений (неопределенные, однозначные, несовместные).

20.10

8

Решение систем линейных уравнений (с двумя переменными) с параметрами

Понятие системы линейных уравнений с параметрами. Алгоритм решения систем линейных уравнений с параметрами.

Самостоятельная

работа

27.10

9

Решение

линейных уравнений и систем линейных уравнений, содержащих параметры

Параметр и количество решений системы линейных уравнений

10.11

10

Контрольная работа по теме «Линейные уравнения и системы линейных уравнений с параметрами»

1

Контрольная

работа

17.11

11

Решение

линейных неравенств с параметрами

1

Линейные

неравенства с параметрами

24.11

12

Решение линейных неравенств с параметрами с помощью графической интерпретации

1

Решение линейных неравенств с параметрами

Самостоятельная

работа

1.12

13

Решение систем линейных неравенств с одной переменной, содержащих параметры

1

Самостоятельная

работа

8.12

14

Квадратные уравнения и неравенства (11 ч)

Решение квадратных уравнений с параметрами

1

Понятие квадратного уравнения с параметром. Алгоритмическое предписание решения квадратных уравнений с параметром. Решение квадратных уравнений  с параметрами. Решение  

квадратных уравнений с параметром первого типа («для каждого значения параметра найти все решения уравнения»)

15.12

15

Использование теоремы Виета при решении квадратных уравнений с параметрами

1

Применение теоремы Виета при решении квадратных уравнений с параметром. Расположение корней квадратичной функции относительно заданной точки

22.12

16

Решение

уравнений с параметрами, приводимых к квадратным

1

Решение квадратных уравнений с параметрами при наличии дополнительных условий к корням уравнения

12.01

17

Расположение корней квадратного уравнения в зависимости от параметра

3

Решение квадратных уравнений второго типа («найти все значения параметра, при каждом из которых уравнение удовлетворяет заданным условиям»)

19.01

26.01

18

Расположение корней квадратного уравнения в зависимости от параметра

19

Расположение корней квадратного уравнения в зависимости от параметра

2.02

20

Взаимное расположение корней двух квадратных уравнений

1

Задачи, сводящиеся к исследованию расположения корней квадратичной функции

9.02

21

Контрольная работа по теме «Квадратные уравнения с параметрами»

1

Контрольная

 работа

16.02

22

Решение квадратных неравенств

1

Решение квадратных неравенств с параметром первого типа. Решение квадратных неравенств с параметром второго типа

23.02

23

Решение неравенств методом интервалов

1

1.03

24

Нахождение заданного количества решений уравнения или неравенства

1

Зависимость количества корней уравнения от коэффициента а и дискриминанта

8.03

25

Аналитические и геометрические приемы решения задач с параметрами (9 ч)

Графический метод решения задач с параметрами

2

Использование графических иллюстраций в задачах с параметрами

15.03

26

Графический метод решения задач с параметрами

5.04

27

Применение понятия «пучок прямых на плоскости»

1

12.04

28

Фазовая плоскость

1

19.04

29

Использование симметрии аналитических выражений

1

Использование симметрии аналитических выражений

26.04

30

Решение

относительно параметра

1

Метод решения относительно параметра

3.05

31

Область

определения помогает решать задачи с параметром

1

Использование ограниченности функций, входящих в левую и правую части уравнений и неравенств

10.05

32

Использование метода оценок и экстремальных свойств функции

1

17.05

33

Равносильность при решении задач с параметрами

1

Применение равносильных переходов при решении уравнений и неравенств с параметром

24.05

34

Решение различных видов уравнений и неравенств с параметрами (1 ч)

Решение тригонометрических, показательных, логарифмических и иррациональных уравнений и неравенств

1

Решение тригонометрических уравнений, неравенств с параметром. Решение логарифмических уравнений, неравенств с параметром. Решение иррациональных уравнений, неравенств с параметром

Обобщение материала

31.05


Литература  для учителя:

  1. Айвазян Д.Ф. Математика. 10 – 11 классы. Решение уравнений и неравенств с параметрами: элективный курс / авт.-сост. Д.Ф. Айвазян. – Волгоград: Учитель, 2009.
  2. Амелькин В.В. Задачи с параметрами [Текст] / В. В. Амелькин, В. Л. Рабцевич. – М.: Асар, 1996.
  3. Башмаков М.И., Братусь Т.А. и др. Алгебра и начала анализа 10-11. Дидактические материалы. М.: Дрофа, 2003.
  4. Беляев С.А. Задачи с параметрами: методическая разработка для учащихся Заочной школы «Юный математик» при ВЗМШ и МЦНМО. – М.: МЦНМО, 2009.
  5. Васильева В. Уравнения и системы уравнений с параметром: применение понятия «пучок прямых на плоскости» [Текст] / В. Васильева, С. Забелина // Математика. – 2002. №4. - с. 20-22.
  6. Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами. – М.: Илекса, Харьков: Гимназия, 2005.
  7. Дорофеев В.Ю. Пособие по математике для поступающих в СПбГУЭФ. – СПб: Изд-во СПбГУЭФ, 2003.
  8. Дорофеев Г.В. Решение задач, содержащих параметры. Ч. 2 [Текст] / Г. В. Дорофеев, В. В. Затакавай. – М.: Перспектива, 1990.-с. 2-38.
  9. Дубич С. Линейные и квадратные уравнения с параметрами [Текст]: 9 класс / С. Дубич // Математика. – 2001. №36. -с. 28-31.
  10. Егерман Е. Задачи с параметрами. 7-11 классы [Текст] / Е. Егерман // Математика. – 2003. №1 -с. 18-20.
  11. Егерман Е. Задачи с параметрами. 7-11 классы [Текст] / Е. Егерман // Математика. – 2003. №2. -с. 10-14.
  12. Карасев В. Решение задач с параметрами [Текст] / В. Ка-расев, Г. Левшина, И. Данченков // Математика. – 2005. №4. -с. 38-44.
  13. Косякова Т. Решение квадратных и дробно-рациональных уравнений, содержащих параметры [Текст] / Т. Косякова // Математика. – 2002. №22. -с. 15-18.
  14. Косякова Т. Решение линейных уравнений и систем линейных уравнений, содержащих параметры [Текст] / Т. Косякова // Математика. – 2001. №38. -с. 5-9.
  15. Крамор В. С. Примеры с параметрами и их решение [Текст]: пособие для поступающих в вузы / В.С. Крамор. - М.: АРКТИ, 2000.-с. 48.
  16. Креславская О. Задачи с параметром в итоговом повторении [Текст] / О. Креславская // Математика. – 2004. №18. -с. 23-27.
  17. Креславская О. Задачи с параметром в итоговом повторении [Текст] / О. Креславская // Математика. – 2004. №19. -с,23-27
  18. Кривчикова Э. Тема «Уравнения и системы уравнений» в курсе алгебры 11 класса [Текст] / Э. Кривчикова // Математика. – 2004. №37.-с. 18-37.
  19. Легошина С. Решение неравенств первой и второй степени с параметрами [Текст] / С. Легошина // Математика. – 2000. №6.-с. 15-17.
  20. Малинин В. Уравнение с параметрами [Текст]: графический метод решения // Математика. – 2003. №29. -с. 12-15.
  21. Мордкович А.Г. Решаем уравнения. – М.: Школа-Пресс, 1995.
  22. Муравин Г.К. Уравнения, неравенства и их системы [Текст]: фрагмент учебника Г.К. Муравина О.В., Муравиной Г.К. // Математика. – 2003. №4. -с. 21-27.
  23. Окунев А.А. Графическое решение уравнений с параметрами [Текст] / А. А. Окунев. – М.: Школа-Пресс, 1986.
  24. Олехник С.Н., Потапов М.К., Пасиченко П.И. Уравнения и неравенства. Нестандартные методы решения: Справочник. – М.: Изд-во Факториал, 1997.
  25. Письменский Д. Т. Математика для старшеклассников [Текст] / Д. Т. Письменский. – М.: Айрис, 1996.
  26. Сканави М.И. Полный сборник задач для поступающих в ВУЗы. Группа повышенной сложности / Под редакцией М.И. Сканави. – М.: ООО «Издательство «Мир и образование»: Мн.: ООО «Харвест», 2006. – 624 с.: ил.
  27. Ткачук В.В. Математика – абитуриенту. Том 1 [Текст] / B. В. Ткачук. - М.: МЦНМО ТЕИС, 1996.-415 с.
  28. Цыганов Ш. Десять правил расположения корней квадратного трехчлена [Текст] / Ш. Цыганов // Математика. – 2002. №18.-с. 19-23.
  29. Цыганов Ш. Квадратные трехчлены и параметры [Текст] / Ш. Цыганов // Математика. – 1999. №5. -с. 4-9.
  30. Шабунин М.И., Уравнения и системы уравнений с параметрами / Математика в школе. – 2003. №7. -с. 10-14.
  31. Шарыгин И.Ф. Факультативный курс по математике. Решение задач [Текст]: учебное пособие для 10 класса средней школы / И. Ф. Шарыгин. – М.: Просвещение, 1989. – 252 с.
  32. Шахмейстер А.Х. Задачи с параметрами в ЕГЭ. – СПб.: «ЧеРо-на-Неве», 2004.
    для ученика:
  1. Мордкович А.Г., Семенов П.В. Алгебра и начала анализа. 10 класс. В 2 ч. Ч. 2: задачник для общеобразовательных учреждений (профильный уровень) / [А.Г. Мордкович и др.]; под ред. А.Г. Мордковича. – М.: Мнемозина, 2007.
  2. Мордкович А.Г., Семенов П.В. Алгебра и начала анализа. 10 класс. В 2 ч. Ч. 1: учебник для общеобразоват. учреждений (профильный уровень) / А.Г. Мордкович, П.В. Семенов. – М.: Мнемозина, 2007.
  3. Мордкович А.Г., Семенов П.В. Алгебра и начала анализа. 11 класс. В 2 ч. Ч. 2: задачник для общеобразовательных учреждений (профильный уровень) / [А.Г. Мордкович и др.]; под ред. А.Г. Мордковича. – М.: Мнемозина, 2007.
  4. Мордкович А.Г., Семенов П.В. Алгебра и начала анализа. 11 класс. В 2 ч. Ч. 1: учебник для общеобразоват. учреждений (профильный уровень) / А.Г. Мордкович, П.В. Семенов. – М.: Мнемозина, 2007.
  5. Мордкович А.Г. Алгебра и начала анализа. 10-11 классы [Текст]: задачник для общеобразовательных учреждений / А.Г. Мордкович, Л.О. Денищева, Т.А. Корешкова, Т. Н. Мишустина, Е. Е. Тульчинская; под ред. А.Г. Мордковича. – М.: Мнемозина, 2006.
  6. Мордкович А.Г. Алгебра и начала анализа. 10-11 классы [Текст]: учебник для общеобразовательных учреждений / А.Г. Мордкович. – М.: Мнемозина, 2006.

По теме: методические разработки, презентации и конспекты

Программа элективного курса: « Уравнения и неравенства » 11 класс

Многие математические задачи сводятся к решению уравнений и неравенств. За время обучения математике школьникам приходится решать достаточно много уравнений и неравенств: линейных, квадрат...

Рабочая программа элективного курса "Уравнения и неравенства"

Элективный курс по алгебре "Уравнения и неравенства"10-11 класс 69 часов...

Программа элективных курсов "Уравнения и неравенства с параметрами", 9 класс

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры учащихся, обладают высокой диагностической и прогностической ценностью, существенно повышают ...

Рабочая программа элективного курса "Уравнения и неравенства с параметрами"

Данная рабочая программа элективного курса предназначена для учащихся 10-11 классов общеобразовательной школы. Она может использоваться в качестве программы для профильного обучения. Программа данного...

Рабочая программа элективного предмета « Уравнения и неравенства с параметрами» 10 класс на 2016-2017 учебный год

Элективный предмет «Решение уравнений и не­равенств с параметрами» составлен на основе авторской программы Д.Ф.Айвазяна с одноименным названием и является предметно-ориенти­рованным и предназнач...

Программа элективного курса" Уравнения и неравенства с параметром"

В предлагаемых материалах задачи с параметром рассматриваются как средство обобщения и систематизации знаний учащихся. Сознательному усвоению учащимися методов решения уравнений и неравенств первой и ...