Биографии математиков
творческая работа учащихся по алгебре (10, 11 класс) на тему

Говорова Нина Германовна
Биографии ученых, занимавшихся неэлементарными функциями. Материал для уроков математического анализа в старших классах

Скачать:

ВложениеРазмер
Microsoft Office document icon biografii_uchyonyh.doc118.5 КБ

Предварительный просмотр:

Биографии  учёных, занимавшихся  неэлементарными                    

                                     функциями

1. ДИРИХЛЕ Петер Густав Лежен  (13.2.1805-5.5.1859) - немецкий математик. Родился в Дюрене. В 1822-1827 Дирихле был домашним учителем в Париже. Входил в кружок молодых ученых, которые группировались вокруг Ж. Фурье. В 1827 Д. занял место доцента в Бреславле; с 1829 работал в Берлине. В 1831-1855 - профессор Берлинского ун-та, а после смерти К. Гаусса (1855) - Геттингенского университета. Дирихле сделал ряд крупных открытий в теории чисел: установил формулы для числа классов бинарных квадратичных форм с заданным определителем и доказал теорему о бесконечности количества простых чисел в арифметической прогрессии из целых чисел, первый член и разность которой - взаимно просты. К решению этих задач Дирихле применил аналитические функции, названные функциями (рядами) Дирихле. Дирихле создал общую теорию алгебраических единиц в алгебраическом числовом поле. В области математического анализа он  впервые точно сформулировал и исследовал понятие условной сходимости ряда, дал строгое доказательство возможности разложения в ряд Фурье кусочно-непрерывной и монотонной функции, что послужило обоснованием для многих дальнейших исследований. Значительны труды Дирихле в механике и математической физике, в частности в теории потенциала. С именем Дирихле связаны задача, интеграл, принцип, характер, ряды и мн. др. Его лекции  имели огромное влияние на выдающихся математиков более позднего времени, в том числе на  Г.Римана, Ф. Эйзенштейна, Л. Кронекера, Ю. Дедекинда и др.

Принцип Дирихле:

  1. Самая популярная формулировка принципа Дирихле такова:

"Если в n клетках сидит m зайцев, причем m>n, то хотя бы в одной клетке сидят, по крайней мере, два зайца".

На первый взгляд даже непонятно, почему это совершенно очевидное замечание является весьма эффективным методом решения задач. Дело в том, что в каждой конкретной задаче нелегко бывает понять, что же здесь "зайцы" и "клетки" и почему зайцев больше, чем клеток. Выбор зайцев и клеток часто неочевиден; далеко не всегда по виду задачи можно определить, что следует воспользоваться принципом Дирихле. А главное, этот метод дает неконструктивное доказательство (мы, естественно, не можем сказать, в какой именно клетке сидят два зайца, а знаем только, что такая клетка есть), а попытка дать конструктивное доказательство, то есть доказательство путем явного построения или указания требуемого объекта, может привести к большим трудностям.
 
 

  1. Некоторые задачи решаются также методами, в какой-то мере аналогичными принципу Дирихле. Сформулируем соответствующие утверждения (все они легко доказываются методом от противного).
     

 a) Если на отрезке длиной 1 расположено несколько отрезков, сумма длин которых больше 1, то, по крайней мере, два из них имеют общую точку. 

б) Если на окружности радиуса 1 расположено несколько дуг, сумма длин которых больше 2П, то, по крайней мере, две из них имеют общую точку. 

в) Если внутри фигуры площадью 1 расположено несколько фигур, сумма площадей которых больше 1, то, по крайней мере, две из них имеют общую точку.

Примеры задач:

Пример 1.

Имеется 25 конфет 3 сортов. Верно ли, что не менее 9 из них будут какого-то одного сорта?

Решение: Пусть "клетками" у нас будут сорта конфет, а "кроликами" - сами конфеты. По принципу Дирихле найдется "клетка", в которой не менее 25 / 3 "кроликов". Так как 8 < 25 / 3 < 9, то найдется 9 конфет одного сорта.

Утверждение можно доказать, проводя сразу рассуждения от противного. Пусть конфет каждого сорта не более 9, то есть не превышает восьми. Тогда всего конфет не превышает 3   8 = 24, а по условию их 25. Противоречие.

Пример 2.

В классе 30 человек. Паша сделал 13 ошибок, а остальные меньше. Доказать, что какие-то три ученика сделали одинаковое количество ошибок.

Решение: По условию задачи наибольшее число ошибок, сделанных в работе 13. Значит, ученики могли сделать 0, 1, 2, ..., 13 ошибок. Эти варианты будут "клетками", а ученики станут "кроликами". Тогда по (обобщенному) принципу Дирихле (14 клеток и 30 зайцев) найдутся три ученика, попавших в одну "клетку", то есть сделавших одинаковое число ошибок.

Пример 3.

Докажите, что никакая прямая не может пересекать все три стороны треугольника.

Решение: Прямая делит плоскость на две полуплоскости, которые мы назовем "клетками". Три вершины треугольника назовем "кроликами". По принципу Дирихле "найдется клетка, в которой сидит, по крайней мере, два кролика", то есть найдутся две вершины, лежащие в одной полуплоскости относительно данной прямой. Сторона, соединяющая эти вершины, не пересекает данную прямую.

2.  ЛАГРАНЖ Жозеф Луи(25.1.1736, Турин, — 10.4.1813, Париж), французский математик и механик, член Парижской АН (1772). Родился в семье обедневшего чиновника. Самостоятельно изучал математику. В 19 лет Л. уже стал профессором в артиллерийской школе Турина. В 1759 избран член Берлинской АН, а в 1766—87 был её президентом. В 1787 Л. переехал в Париж; с 1795 профессор Нормальной школы, с 1797 — Политехнической школы.

  Наиболее важные труды Лагранжа относятся к вариационному исчислению, к аналитической и теоретической механике. Опираясь на результаты, полученные Л.Эйлером, он разработал основные понятия вариационного исчисления и предложил общий аналитический метод (метод вариаций) для решения вариационных задач. В классическом трактате «Аналитическая механика» (1788; русский перевод, т. 1—2, 2 изд., 1950) Л. в основу всей статики положил «общую формулу», являющуюся принципом возможных перемещений, а в основу всей динамики — «общую формулу», являющуюся сочетанием принципа возможных перемещений с принципом Д'Аламбера. Из «общей формулы» динамики может быть получена, как частный случай, «общая формула» статики. Лагранж  ввёл обобщённые координаты и придал уравнениям движения форму, называемую его именем. Лагранжу принадлежат также выдающиеся исследования по различным вопросам математического анализа (формула остаточного члена ряда Тейлора, формула конечных приращений, теория условных экстремумов), теории чисел, алгебре (симметрической функции корней уравнения, теория и приложения непрерывных дробей), по дифференциальным уравнениям (теория особых решений, метод вариации постоянных), по интерполированию, математической картографии, астрономии и пр.

Круг научных исследований Лагранжа был необычайно широк. Они посвящены механике, геометрии, математическому анализу, алгебре, теории чисел, а также теоретической астрономии. Основным направлением исследований Лагранжа было представление самых различных явлений в механике с единой точки зрения. Он вывел уравнений, описывающее поведение любых систем под действием сил. В области астрономии Лагранж много сделал для решения проблемы устойчивости Солнечной системы; доказал некоторые частные случаи устойчивого движения, в частности для малых тел находящихся в так называемых треугольных точках либрации.

В сочинении "О распространении звука" (1759г.) Лагранж правильно решил проблему, над которой работали И. Ньютон, Б. Тейлор, Л. Эйлер, Ж. Д'Аламбер и И.Бернулли. Лагранж получил важные результаты в диофантовом анализе, теории алгебр, уравнений, вариационном исчислении, аналитической и небесной механике (применение метода вариации произвольных постоянных, задача трех тел), интегрировании уравнений с частными производными, сферической астрономии, картографии. В 1787г. опубликована работа Лагранжа "Аналитическая механика", в которой Лагранж подытожил достижения в этой области за прошлое столетие и создал классическую аналитическую механику в виде учения об общих дифференциальных уравнениях движения произвольных материальных систем. После открытия Института и Бюро долгот Лагранж становится его членом и в 1792 г. вместе с П. Лапласом, Г. Монжем разрабатывает метрическую систему мер. В 1798г. Лагранж опубликовал "Трактат о решении численных уравнений всех степеней". Курс математического анализа был издан в 2-х частях под названиями "Теория аналитических функций" (1797г.) и "Лекции по исчислению функций" (1801-1806гг.). В математическом анализе Лагранж дал формулу остаточного члена ряда Тейлора, формулу конечных приращений и интерполяционную формулу, ввел способ множителей для решения задачи отыскания условных экстремумов. В области дифференциальных уравнений создал теорию особых решений и разработал метод вариации произвольных постоянных. В алгебре построил теорию уравнений, обобщением которой является теория Галуа, нашел способ приближенного вычисления корней алгебр, уравнения с помощью непрерывных дробей, метод отделения корней алгебр, уравнений, метод исключения переменных из системы уравнений (составление результанта), разложение корней уравнений в ряд Лагранжа. В теории чисел с помощью непрерывных дробей Лагранж решил неопределенные уравнения 2-й степени с двумя неизвестными, доказал периодичность разложений квадратичных иррациональностей в непрерывные дроби. Исходя из общих законов динамики, Лагранж указал две основные формы дифференциальных уравнений движения несвободной системы, которые теперь называются уравнениями Лагранжа 1-го рода, и вывел уравнения в обобщенных координатах - уравнения Лагранжа 2-го рода.

Лагранж внес существенный вклад во многие области математики, включая вариационное исчисление, теорию дифференциальных уравнений, решение задач на нахождение максимумов и минимумов, теорию чисел (теорема Лагранжа), алгебру и теорию вероятностей. В двух своих важных трудах – Теория аналитических функций и О решении численных уравнений– подытожил все, что было известно по этим вопросам в его время, а содержавшиеся в них новые идеи и методы были развиты в работах математиков 19 в.

 3. ЛЕЖАНДР Адриен Мари (18.9.1752, Париж, — 10.1.1833, там же).

 

 Французский математик, профессор Политехнической школы,    

 член Парижской АН (1785). Родился в Париже. Лежандр  

 обосновал и развил теорию геодезических измерений, сделал

 значительный вклад в тригонометрию на поверхности

 сфероида. Он сформулировал теорему о том, что сферический

 треугольник, стороны которого в сравнении с радиусом сферы

 так малы, что сферический излишек достигает всего

 нескольких градусов, можно вычислять как плоский  

 треугольник с теми самыми сторонами, вычтя из каждого его  

 угла треть сферического излишка. Одновременно с        

 К.Ф. Гауссом, но независимо от него, Лежандр разработал  

 метод вычисления наивероятнейших результатов совокупности наблюдений, известный в науке как метод наименьших квадратов. Ему также принадлежит ряд фундаментальных исследований по математическому анализу и теории чисел. В 1783, определяя компоненту силы притяжения эллипсоида вращения в направлении радиус-вектора, открыл многочлены, получившие название полиномов Лежандра, и доказал их важнейшие свойства. В вариационном исчислении Лежандр установил признаки существования экстремумов. Его двухтомный труд "Теория чисел", третье издание, которого вышло в 1830, был самым полным изложением теории чисел в то время. Первая из его четырех частей посвящена теории непрерывных дробей, которую впоследствии Лежандр использовал для решения неопределенных уравнений. В следующих двух частях рассматриваются общие свойства чисел, - доказывается закон взаимности квадратичных вычетов, по которым определяются делители целых чисел. В четвертой части "Теории чисел" освещается вопрос о количестве простых чисел, которые не превышают данного числа, а во втором издании этого труда автор приводит и свою знаменитую эмпирическую формулу , где - число простых чисел, не превосходящих х, найденную в 1798. В последующих изданиях (1808, 1816, 1825) он помещает доказательство великой теоремы Ферма для п = 5, которое нашел одновременно с П. Дирихле. В 1794 Лежандр издал учебник по элементарной геометрии под названием "Начала геометрии". В этом учебнике, в отличие от "Начал" Евклида, осуществлена алгебраизация и арифметизация геометрии, а также используются элементы учения о симметрии. По образцу "Начал геометрии" Лежандра создавались все учебники по элементарной геометрии, в частности в России. Лежандру принадлежит одна из попыток доказать постулат о параллельности.

4. ЭЙЛЕР Леонард [4(15).4.1707, Базель, Швейцария, — 7(18).9.1783, Петербург], входит в первую пятерку величайших математиков всех времен и народов. Родился в Базеле (Швейцария) 15 апреля 1707 в семье пастора и провел детство в близлежащем селении, где его отец получил приход. Здесь на лоне сельской природы, в благочестивой обстановке скромного пасторского дома Леонард получил начальное воспитание, наложившее глубокий отпечаток на всю его последующую жизнь и мировоззрение. Обучение в гимназии в те времена было непродолжительным. Осенью 1720 тринадцатилетний Эйлер поступил в Базельский университет, через три года окончил низший – философский факультет и записался, по желанию отца, на теологический факультет. Летом 1724 на годичном университетском акте он прочел по-латыни речь о сравнении картезианской и ньютонианской философии. Проявив интерес к математике, он привлек к себе внимание Иоганна Бернулли. Профессор стал лично руководить самостоятельными занятиями юноши и вскоре публично признал, что от проницательности и остроты ума юного Эйлера он ожидает самых больших успехов.

В 26 лет Эйлер был избран российским академиком, но через 8 лет он переехал из Петербурга в Берлин.

В Берлине Эйлер занимался всей математикой сразу, и почти все у него получалось. Например, захотелось ему перенести все методы математического анализа на функции, зависящие от комплексных чисел - и создал он теорию функций комплексного переменного. Попутно Эйлер выяснил, что показательная функция и синусоида суть две стороны одной медали. Аналогично было с Большой Теоремой Ферма. Услыхав о ней, Эйлер решил сам придумать утраченное доказательство - и вскоре обнаружил "метод спуска", найденный Ферма веком раньше. Проверив этот метод для степеней 3 и 4, Эйлер стал проверять его для следующего простого показателя - 5. Тут обнаружились неожиданные затруднения, и Эйлер оставил эту тему молодым исследователям. Но только в конце 20 века эта проблема, кажется, приблизилась к окончательному решению.

В геометрии Эйлер также оставил значительный след. Он искал в ней не столько новые изящные факты, сколько общие теоремы, не укладывающиеся в догматику Евклида. Например, теорема о связи между числами вершин, ребер и граней выпуклого многогранника. Эту формулу знал еще Декарт; но он не оставил ее доказательства. В Берлине "король математиков" Леонард Эйлер работал с 1741 по 1766 год; потом он покинул Берлин и вернулся в Россию. Надвигалась старость, выросла огромная семья, а новая российская царица Екатерина II (немка по происхождению) предложила Эйлеру гораздо лучшие условия жизни, чем предоставлял своим академикам скуповатый и капризный Фридрих II. Тесное общение с научной молодежью Эйлера уже не увлекало; он торопился успеть изложить на бумаге те бесчисленные открытия и догадки, которые осенили его в золотую берлинскую пору. Все научные журналы Европы охотно печатали новые статьи Эйлера. Его трудоспособность и вдохновение с годами нарастали, и многие тексты увидели свет лишь после смерти автора. Переезд Эйлера в Петербург мало что изменил для математиков Европы. Великое светило лишь сместилось на восток, не исчезая с горизонта. Удивительно другое: слава Эйлера не закатилась и после того, как ученого поразила слепота (вскоре после переезда в Петербург). Неукротимый старец продолжал размышлять о математике и диктовать очередные статьи или книги до самой смерти. Она настигла его на 77 году жизни и на 16 году слепоты... В 1770-е годы вокруг Эйлера выросла Петербургская математическая школа, более чем наполовину состоявшая из русских ученых. Тогда же завершилась публикация главной его книги - "Основ дифференциального и интегрального исчисления", по которой учились все европейские математики с 1755 по 1830 год. Она выгодно отличается от "Начал" Евклида и от "Принципов" Ньютона. Возведя стройное здание математического анализа от самого фундамента, Эйлер не убрал те леса и лестницы, по которым он сам карабкался к своим открытиям. Многие красивые догадки и начальные идеи доказательств сохранены в тексте, несмотря на содержащиеся в них ошибки - в поучение всем наследникам эйлеровой мысли. Первый учебник, предназначенный не для последователей, а для исследователей: таково завещание Эйлера и всей эпохи Просвещения, адресованное грядущим векам и народам.

Научное наследие Леонарда Эйлера колоссально. Ему принадлежат классические результаты в математическом анализе. Он продвинул его обоснование, существенно развил интегральное исчисление, методы интегрирования обыкновенных дифференциальных уравнений и уравнений в частных производных. Эйлеру принадлежит знаменитый шеститомный курс математического анализа, включающий Введение в анализ бесконечно малых, Дифференциальное исчисление и Интегральное исчисление (1748–1770). На этой «аналитической трилогии» учились многие поколения математиков всего мира.

Эйлер получил основные уравнения вариационного исчисления и определил пути дальнейшего его развития, подведя главные итоги своих исследований в этой области в монографии Метод нахождения кривых линий, обладающих свойствами максимума или минимума (1744). Значительны заслуги Эйлера в развитии теории функций, дифференциальной геометрии, вычислительной математики, теории чисел. Двухтомный курс Эйлера Полное руководство по алгебре (1770) выдержал около 30 изданий на шести европейских языках.

Современная пятитомная Математическая энциклопедия указывает двадцать математических объектов (уравнений, формул, методов), которые носят сейчас имя Эйлера. Его имя носит и ряд фундаментальных уравнений гидродинамики и механики твердого тела.

Наряду с многочисленными собственно научными результатами, Эйлеру принадлежит историческая заслуга создания современного научного языка. Он является единственным автором середины XVIII в., труды которого читаются даже сегодня без всякого труда.

Петербургский архив Российской Академии наук хранит, кроме того, тысячи страниц неопубликованных исследований Эйлера, преимущественно в области механики, большое число его технических экспертиз, математические «записные книжки» и колоссальную научную корреспонденцию.

Его научный авторитет при жизни был безграничен. Он состоял почетным членом всех крупнейших академий и ученых обществ мира. Влияние его трудов было весьма значительным и в XIX в. В 1849 Карл Гаусс писал, что «изучение всех работ Эйлера останется навсегда лучшей, ничем не заменимой, школой в различных областях математики».

Общий объем сочинений Эйлера громаден. Свыше 800 его опубликованных научных работ составляют около 30 000 печатных страниц и складываются в основном из следующего: 600 статей в изданиях Петербургской Академии наук, 130 статей, опубликованных в Берлине, 30 статей в разных журналах Европы, 15 мемуаров, удостоенных премий и поощрений Парижской Академии наук, и 40 книг отдельных сочинений. Все это составит 72 тома близкого к завершению Полного собрания трудов  Эйлера, издаваемого в Швейцарии с 1911. Все работы печатаются здесь на том языке, на котором они были первоначально опубликованы (т.е. на латинском и французском языках, которые были в середине XVIII в. основными рабочими языками, соответственно, Петербургской и Берлинской академий). К этому добавится еще 10 томов его Научной переписки, к изданию которой приступили в 1975.

Одна из отличительных сторон творчества Э. — его исключительная продуктивность. Только при жизни Э. было опубликовано около 550 его книг и статей (список трудов Э. содержит примерно 850 назв.). В 1909 Швейцарское естественнонаучное общество приступило к изданию полного собрания сочинений Э., которое завершено в 1975; оно состоит из 72 томов. Большой интерес представляет и колоссальная научная переписка Э. (около 3000 писем), до сих пор опубликована лишь частично.

  Необыкновенно широк был круг занятий Э., охватывавших все отделы современной ему математики и механики, теорию упругости, математическую физику, оптику, теорию музыки, теорию машин, баллистику, морскую науку, страховое дело и т.д. Около 3/5 работ Э. относится к математике, остальные 2/5 преимущественно к её приложениям. Свои результаты и результаты, полученные другими, Э. систематизировал в ряде классических монографий, написанных с поразительной ясностью и снабженных ценными примерами. Таковы, например, «Механика, или Наука о движении, изложенная аналитически» (т. 1—2, 1736), «Введение в анализ» (т. 1—2, 1748), «Дифференциальное исчисление» (1755), «Теория движения твёрдого тела» (1765), «Универсальная арифметика» (т. 1—2, 1768—69), выдержавшая около 30 изданий на 6 языках, «Интегральное исчисление» (т. 1—3, 1768—70, т. 4, 1794) и др. В 18 в., а отчасти и в 19 в. огромную популярность приобрели общедоступные «Письма о разных физических и философических материях, писанные к некоторой немецкой принцессе...» (ч. 1—3, 1768—74), которые выдержали свыше 40 изданий на 10 языках. Большая часть содержания монографий Э. вошла затем в учебные руководства для высшей и частично средней школы. Невозможно перечислить все доныне употребляемые теоремы, методы и формулы Э., из которых только немногие фигурируют в литературе под его именем

Главным делом Э. как математика явилась разработка математического анализа. Он заложил основы нескольких математических дисциплин, которые только в зачаточном виде имелись или вовсе отсутствовали в исчислении бесконечно малых И. Ньютона, Г. В. Лейбница, Я. и И.Бернулли. Так, Э. первый ввёл функции комплексного аргумента («Введение в анализ», т. 1) и исследовал свойства основных элементарных функций комплексного переменного (показательные, логарифмические и тригонометрические функций); в частности, он вывел формулы, связывающие тригонометрические функции с показательной. Работы Э. в этом направлении положили начало теории функций комплексного переменного.

  Э. явился создателем вариационного исчисления, изложенного в работе «Метод нахождения кривых линий, обладающих свойствами максимума, либо минимума...» (1744). После работ Ж. Лагранжа Э. далее развил вариационное исчисление в «Интегральном исчислении» и ряде статей. Метод, с помощью которого Э. в 1744 вывел необходимое условие экстремума функционала — уравнение Эйлера, явился прообразом прямых методов вариационного исчисления 20 в. Э. создал как самостоятельную дисциплину теорию обыкновенных дифференциальных уравнений и заложил основы теории уравнений с частными производными. Здесь ему принадлежит огромное число открытий: классический способ решения линейных уравнений с постоянными коэффициентами, метод вариации произвольных постоянных, выяснение основных свойств уравнения Риккати, интегрирование линейных уравнений с переменными коэффициентами с помощью бесконечных рядов, критерии особых решений, учение об интегрирующем множителе, различные приближённые методы и ряд приёмов решения уравнений с частными производными. Значит. часть этих результатов Э. собрал в своём «Интегральном исчислении».

  Э. обогатил также дифференциальное и интегральное исчисление в узком смысле слова (например, учение о замене переменных, теорема об однородных функциях, понятие двойного интеграла и вычисление многих специальных интегралов). В «Дифференциальном исчислении» Э. высказал и подкрепил примерами убеждение в целесообразности применения расходящихся рядов и предложил методы обобщённого суммирования рядов, предвосхитив идеи современной строгой теории расходящихся рядов, созданной на рубеже 19 и 20 вв. Кроме того, Э. получил в теории рядов множество конкретных результатов. Он открыл т. н. формулу суммирования Эйлера — Маклорена, предложил преобразование рядов, носящее его имя, определил суммы громадного количества рядов и ввёл в математику новые важные типы рядов (например, тригонометрические ряды). Сюда же примыкают исследования Э. по теории непрерывных дробей и других бесконечных процессов.

  Э. является основоположником теории специальных функций. Он первым начал рассматривать синус и косинус как функции, а не как отрезки в круге. Им получены почти все классического разложения элементарных функций в бесконечные ряды и произведения. В его трудах создана теория гамма-функции. Он исследовал свойства эллиптических интегралов, гиперболических и цилиндрических функций, дзета-функции, некоторых тета-функций, интегрального логарифма и важных классов специальных многочленов.

  По замечанию П. Л. Чебышева, Э. положил начало всем изысканиям, составляющим общую часть теории чисел, к которой относится свыше 100 мемуаров Э. Так, Э. доказал ряд утверждений, высказанных П. Ферма (см., например, Ферма малая теорема), разработал основы теории степенных вычетов и теории квадратичных форм, обнаружил (но не доказал) квадратичный закон взаимности (см. Квадратичный вычет) и исследовал ряд задач диофантова анализа. В работах о разбиении чисел на слагаемые и по теории простых чисел Э. впервые использовал методы анализа, явившись тем самым создателем аналитической теории чисел. В частности, он ввёл дзета-функцию и доказал т. н. тождество Э., связывающее простые числа со всеми натуральными.

  Велики заслуги Э. и в других областях математики. В алгебре ему принадлежат работы о решении в радикалах уравнений высших степеней и об уравнениях с двумя неизвестными, а также т. н. тождество Э. о четырёх квадратах. Э. значительно продвинул аналитическую геометрию, особенно учение о поверхностях 2-го порядка. В дифференциальной геометрии он детально исследовал свойства геодезических линий, впервые применил натуральные уравнения кривых, а главное, заложил основы теории поверхностей. Он ввёл понятие главных направлений в точке поверхности, доказал их ортогональность, вывел формулу для кривизны любого нормального сечения, начал изучение развёртывающихся поверхностей и т.д.; в одной посмертно опубликованной работе (1862) он частично предварил исследования К. Ф. Гаусса по внутренней геометрии поверхностей. Э. занимался и отд. вопросами топологии и доказал, например, важную теорему о выпуклых многогранниках. Эйлера-математика нередко характеризуют как гениального «вычислителя». Действительно, он был непревзойдённым мастером формальных выкладок и преобразований, в его трудах многие математические формулы и символика получили современный вид (например, ему принадлежат обозначения для е и p). Однако Э. был не только исключительной силы «вычислителем». Он внёс в науку ряд глубоких идей, которые ныне строго обоснованы и служат образцом глубины проникновения в предмет исследования.

  По выражению П. С. Лапласа, Эйлер  явился учителем математиков 2-й половины 18 в..    От его работ непосредственно отправлялись в разнообразных исследованиях  П.С.Лаплас, Ж. Л. Лагранж, Г. Монж, А. М. Лежандр, К. Ф. Гаусс, позднее О. Коши, М. В. Остроградский, П. Л. Чебышев и др. Русские математики высоко ценили его творчество, а деятели чебышевской школы видели в нём своего идейного предшественника в его постоянном чувстве конкретности, в интересе к конкретным трудным задачам, требующим развития новых методов, в стремлении получать решения задач в форме законченных алгоритмов, позволяющих находить ответ с любой требуемой степенью точности.

 


По теме: методические разработки, презентации и конспекты

Портрет как один из способов знакомства с биографией и творчеством автора

Портрет как один из способов знакомства с биографией и творчеством автора      Появление портрета на уроках по биографии писателя не новость в нашей школе. В школах все ...

биографии ученых-математиков

данный материал был подобран учениками 7 класса для оформления стенда в кабинете в рамках недели математики...

Биографии математиков

Данный материал содержит интересные факты из биографий Иссака Ньютона и Леонардо Пизанского. Данная работа оформлена в виде рефератов....

Биография математика Векуа И.Н. на русском и грузинском языках

Биография математика Векуа И.Н. на русском и грузинском языках...

Интегрированный урок (математика-литература) по теме "Биография М.В.Ломоносова в математических задачах".

Материал содержит т конспект данного урока . Данные материалы можно использовать для уч-ся 6-8 классов, меняя уровень и содержание математических задач....

Биография и творчество И.А.Крылова Презентация содержит информацию о биографии И.А. Крылова, о жанре басня, о понятиях аллегории и морали

Презентация содержит информацию о биографии И.А. Крылова, о жанре басня, о понятиях аллегории и морали...