Рабочая программа по алгебре 8 класс по учебнику Макарычева
календарно-тематическое планирование по алгебре (8 класс) на тему

Урум Елена Николаевна
Материалы для рабочей программы составлены на основе: • федерального компонента государственного стандарта общего образования, • примерной программы по математике основного общего образования, • федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2015-2016 учебный год, • с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования, • авторского тематического планирования учебного материала.

Скачать:

ВложениеРазмер
Файл rabochaya_programma_8_klass.docx75.09 КБ

Предварительный просмотр:

Рабочая программа

По алгебре 8 класса

к учебнику: Ю.Н. Макарычев,  и др., под редакцией С.А. Теляковского»  

3 часа в неделю

МБОУ «Краснобогатырская СОШ»

Учитель: Урум Елена Николаевна

Пояснительная записка.

Материалы для рабочей программы составлены на основе:

  • федерального компонента государственного стандарта общего образования,
  • примерной программы по математике основного общего образования,
  • федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2015-2016 учебный год,
  • с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования,
  • авторского тематического планирования учебного материала.

Общая характеристика учебного предмета

        Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

        Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

        Алгебра Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

        Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

        Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

        При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.

        В курсе алгебры 8 класса вырабатывается умение выполнять тождественные преобразования рациональных выражений; систематизируются сведения о рациональных числах, и даётся представление об иррациональных числах, расширяется тем самым понятие о числе; вырабатывается умение выполнять преобразования выражений, содержащих квадратные корни; вырабатываются умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач; знакомятся учащиеся с применением неравенств для оценки значений выражений, вырабатывается умение решать линейные неравенства с одной переменной и их системы; вырабатывается умение применять свойства степени с целым показателем в вычислениях и преобразованиях, формируются начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

Согласно Федеральному базисному учебному плану на изучение математики в 8 классе отводится не менее 170 часов из расчета 5 ч в неделю, при этом разделение часов на изучение алгебры и геометрии следующее:

3 часа в неделю алгебры, итого 102 часа; 2 часа в неделю геометрии, итого 68 часов.

Количество учебных часов:

В год -102 часа (3 часа в неделю)

В том числе:

Контрольных работ – 10 (включая итоговую контрольную работу)

Формы промежуточной и итоговой аттестации: Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работ. Итоговая аттестация предусмотрена в виде итоговой контрольной работы.

Уровень обучения – базовый.

Тематический план.

Раздел

Количество часов

Количество контрольных работ

  1. Повторение

4

1

  1.  Рациональные дроби

22

2

  1. Квадратные корни

18

2

  1.  Квадратные уравнения

18

2

  1.  Неравенства

17

1

  1. Степень с целым показателем.

13

1

  1. Повторение

10

1

Срок реализации рабочей учебной программы – 1 учебный год.

        В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением  ИКТ.

ОСНОВНОЕ   СОДЕРЖАНИЕ

Глава 1. Рациональные дроби (22 часа)

        Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у = и её график.

Цель: выработать умение выполнять тождественные преобразования рациональных выражений.

        Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с обучающимися преобразования целых выражений.

        Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.

        При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.

        Изучение темы завершается рассмотрением свойств графика функции у =. 

Глава 2. Квадратные корни (18 часов)

        Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция у = , её свойства и график.

Цель: систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные обучающимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

        При введении понятия корня полезно ознакомить обучающихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество =, которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида , . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений обучающихся. Рассматриваются функция у=, её свойства и график. При изучении функции у=, показывается ее взаимосвязь с функцией у = х2, где х ≥ 0.

 Глава 3. Квадратные уравнения (18 часов)

        Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Цель: выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются  алгоритмы  решения  неполных  квадратных уравнений различного вида.

Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где, а  0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.

Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.

Глава 4. Неравенства (17 часов)

        Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.

Цель: ознакомить обучающихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.

Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной Погрешности и точности приближения, относительной погрешности.

Умения проводить дедуктивные рассуждения получают развитие, как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление обучающихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах > b, ах < b, остановившись специально на случае, когда, а<0.

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

Глава 5. Степень с целым показателем. Элементы статистики (13 часов)

        Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.

Цель: выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.

Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Обучающимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные обучающимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма.

        6. Повторение (10 часов)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 8 класса.

Требования к уровню подготовки обучающихся  в 8 классе

        В ходе преподавания алгебры в 8 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

        планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

        решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

        исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

        ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

        проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

        поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В результате изучения курса алгебры8 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

АРИФМЕТИКА

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;
  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;
  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;
  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;
  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;
  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;
  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

АЛГЕБРА

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
  • решать линейные и квадратные неравенства с одной переменной и их системы;
  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
  • изображать числа точками на координатной прямой;
  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
  • описывать свойства изученных функций (у=кх, где к0, у=кх+b, у=х2, у=х3, у =, у=), строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
  • интерпретации графиков реальных зависимостей между величинами.

ЭЛЕМЕНТЫ ЛОГИКИ, КОМБИНАТОРИКИ,
СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
  • решать комбинаторные задачи путем систематического перебора возможных вариантов, вычислять средние значения результатов измерений;
  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);
  • распознавания логически некорректных рассуждений;
  • записи математических утверждений, доказательств;
  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
  • решения учебных и практических задач, требующих систематического перебора вариантов;
  • понимания статистических утверждений.

Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;
  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;
  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  •  допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
  • Отметка «2» ставится, если:
  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

  • работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2.Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
  • продемонстрировал знание теории ранее изученных сопутствующих тем,  сформированность  и устойчивость используемых при ответе умений и навыков;
  • отвечал самостоятельно, без наводящих вопросов учителя;
  • возможны одна – две  неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
  • допущены ошибка или более двух недочетов  при освещении второстепенных вопросов или в выкладках,  легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;
  • обнаружено незнание учеником большей или наиболее важной части учебного материала;
  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

  • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
  • незнание наименований единиц измерения;
  • неумение выделить в ответе главное;
  • неумение применять знания, алгоритмы для решения задач;
  • неумение делать выводы и обобщения;
  • неумение читать и строить графики;
  • неумение пользоваться первоисточниками, учебником и справочниками;
  • потеря корня или сохранение постороннего корня;
  • отбрасывание без объяснений одного из них;
  • равнозначные им ошибки;
  • вычислительные ошибки, если они не являются опиской;
  •  логические ошибки.

3.2. К негрубым ошибкам следует отнести:

  • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
  • неточность графика;
  • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
  • нерациональные методы работы со справочной и другой литературой;
  • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

  • нерациональные приемы вычислений и преобразований;
  • небрежное выполнение записей, чертежей, схем, графиков.

Календарно-тематическое планирование учебного материала

по алгебре 8 класс

№ урока

Наименование разделов и тем

Кол-во часов

Тип урока

Элементы содержания образования

Вид контроля

Дата проведения урока

план

факт

1-4

Повторение

4

Глава I. РАЦИОНАЛЬНЫЕ ДРОБИ – 22 часа

5-6

Рациональные выражения

2

Урок ознакомления с новым материалом

Дробные выражения. Рациональные выражения. Допустимые значения переменных. Тождество, тождественное преобразование выражения.

Взаимный контроль

Урок закрепления изученного

Фронтальный контроль

7-8

Основное свойство дроби. Сокращение дробей

2

Урок ознакомления с новым материалом

Взаимный контроль

Урок применения знаний

Фронтальный контроль

9-10

Сложение и вычитание дробей с одинаковыми знаменателями

2

Комбинированный урок

Взаимный контроль

11-12

Сложение и вычитание дробей с разными знаменателями

2

Комбинированный урок

Взаимный контроль

13

Сложение и вычитание дробей. Подготовка к контрольной работе

1

Урок систематизации и обобщения ЗУН

Фронтальный контроль

14

Контрольная работа №2 «Сложение и  вычитание рациональных  дробей»

1

Урок проверки, оценки и коррекции ЗУН

Индивидуальный контроль

15-16

Умножение дробей. Возведение дроби в степень.

2

Урок ознакомления с новым материалом

Взаимный контроль

Урок закрепления изученного

Фронтальный контроль

17-18

Деление дробей

2

Урок ознакомления с новым материалом

Взаимный контроль

Урок закрепления изученного

Фронтальный контроль

19-22

Преобразование рациональных выражений

4

Урок закрепления изученного

Взаимный контроль

Комбинированный урок

Самоконтроль

Комбинированный урок

Фронтальный контроль

Урок обобщения и систематизации знаний

Групповой контроль

23-24

Функция    и ее график

2

Комбинированный урок

Взаимный контроль

Урок закрепления изученного

Фронтальный контроль

25

Умножение и деление дробей. Подготовка к контрольной работе

1

Урок систематизации и обобщения ЗУН

Фронтальный контроль

26

Контрольная работа №3 «Произведение и частное дробей»

1

Урок проверки, оценки и коррекции ЗУН

Индивидуальный контроль

Глава II. КВАДРАТНЫЕ КОРНИ – 18 часов

27

Рациональные числа

1

Урок ознакомления с новым материалом

Квадратный корень, арифметический квадратный корень. Квадратный корень из произведения и дроби. Квадратный корень из степени.

Вынесение множителя из-под знака корня. Внесение множителя под знак корня. Освобождение от иррациональности в знаменателе.

Взаимный контроль

28

Иррациональные числа

1

Комбинированный урок

Взаимный контроль

29

Квадратные корни. Арифметический квадратный корень

1

Урок ознакомления с новым материалом

Взаимный контроль

30

Уравнение  

1

Урок ознакомления с новым материалом

Взаимный контроль

31

Нахождение приближенных значений квадратного корня

1

Комбинированный урок

32

Функция    и ее график

1

Комбинированный урок

Взаимный контроль

33-34

Квадратный корень из произведения и дроби

2

Урок ознакомления с новым материалом

Урок закрепления изученного

Фронтальный контроль

35

Квадратный корень из степени

1

Комбинированный урок

36

Свойства квадратного корня. Подготовка к контрольной работе

1

Урок обобщения и систематизации ЗУН

Фронтальный контроль

37

Контрольная работа № 4 «Свойства квадратного корня»

1

Урок проверки, оценки и коррекции ЗУН

Индивидуальный контроль

38

Вынесение множителя из под знака корня

1

Комбинированный урок

Взаимный контроль

39

Внесение множителя под знак корня

1

Комбинированный урок

Взаимный контроль

40-42

Преобразование выражений, содержащих квадратные корни

3

Урок закрепления изученного

Взаимный контроль

Урок закрепления изученного

Фронтальный контроль

Комбинированный урок

Самоконтроль

43

Преобразование выражений, содержащих квадратные корни. Подготовка к контрольной работе

1

Урок обобщения и систематизация ЗУН

Фронтальный контроль

44

Контрольная работа № 5 «Применение свойств арифметического корня»

1

Урок проверки, оценки и коррекции ЗУН

Индивидуальный контроль

Глава III. КВАДРАТНЫЕ УРАВНЕНИЯ – 18 часов

45

Неполные квадратные уравнения

1

Урок ознакомления с новым материалом

Квадратные уравнения: полные, неполные, приведенные. Дискриминант квадратного уравнения; формула корней квадратного уравнения. Теорема Виета и обратная ей. Дробные рациональные уравнения и их решения.

Взаимный контроль

46-48

Формула корней квадратного уравнения

3

Комбинированный урок

Взаимный контроль

49-51

Решение задач с помощью квадратных уравнений

3

Комбинированный урок

Взаимный контроль

Фронтальный контроль

Самоконтроль

52-53

Теорема Виета

2

Урок ознакомления с новым материалом

Взаимный контроль

Урок закрепления изученного

Фронтальный контроль

54

Решение уравнений и задач. Подготовка к контрольной работе

1

Урок обобщения и систематизации ЗУН

55

Контрольная работа № 6 «Квадратные уравнения»

1

Урок проверки, оценки и коррекции ЗУН

Индивидуальный контроль

56-58

Решение дробных рациональных уравнений

3

Комбинированный урок

Фронтальный контроль

Урок применения знаний и умений

Урок закрепления изученного

59-60

Решение задач с помощью рациональных уравнений

2

Комбинированный урок

Фронтальный контроль

61

Решение уравнений и задач. Подготовка к контрольной работе

1

Урок систематизации и обобщения ЗУН

Фронтальный контроль

62

Контрольная работа № 7 «Дробные  рациональные уравнения»

1

Урок проверки, оценки и коррекции ЗУН

Индивидуальный контроль

Глава IV. НЕРАВЕНСТВА – 17 часов

63

Числовые неравенства

1

Урок ознакомления с новым материалом

Определение числовых неравенств, их свойств. Числовые промежутки. Пересечение и объединение множеств. Неравенства с одной переменной и их решение. Системы неравенств с одной переменной и их решение.

Взаимный контроль

64-65

Свойства числовых неравенств

2

Урок ознакомления с новым материалом

Взаимный контроль

Урок закрепления изученного

66

Сложение числовых неравенств

1

Комбинированный урок

Взаимный контроль

67

Умножение числовых неравенств

1

Комбинированный урок

Взаимный контроль

68

Сложение и умножение числовых неравенств. Подготовка к контрольной работе

1

Урок систематизации и обобщения ЗУН

Фронтальный контроль

69

Контрольная работа № 8 «Числовые неравенства»

1

Урок проверки, оценки и коррекции ЗУН

Индивидуальный контроль

70

Погрешность и точность приближения

1

71

Пересечение и объединение множеств

1

72

Числовые промежутки

1

Урок ознакомления с новым материалом

Взаимный контроль

73-74

Решение неравенств с одной переменной

2

Урок ознакомления с новым материалом

Взаимный контроль

Урок закрепления изученного

Фронтальный контроль

75-77

Решение систем неравенств с одной переменной

3

Урок ознакомления с новым материалом

Взаимный контроль

Урок применения знаний

Самоконтроль

Урок закрепления изученного

Фронтальный контроль

78

Решение неравенств и их систем. Подготовка к контрольной работе

1

Урок систематизации и обобщения ЗУН

Фронтальный контроль

79

Контрольная работа № 9  «Решение неравенств и их систем»

1

Урок проверки, оценки и коррекции ЗУН

Индивидуальный контроль

Глава V. СТЕПЕНЬ С ЦЕЛЫМ ПОКАЗАТЕЛЕМ. ЭЛЕМЕНТЫ СТАТИСТИКИ – 13 часов

80-81

Степень с целым отрицательным показателем

2

Урок ознакомления с новым материалом

Определение степени с целым отрицательным показателем и ее свойства. Стандартный вид числа.

Взаимный контроль

Комбинированный урок

82-84

Свойства степени с целым показателем

3

Урок применения знаний

Взаимный контроль

Комбинированный урок

Групповой контроль

Урок закрепления изученного

Фронтальный контроль

85

Стандартный вид числа

1

Комбинированный урок

Взаимный контроль

86

Решение упражнений. Подготовка к контрольной работе

1

Урок систематизации и обобщения ЗУН

87

Контрольная работа № 10 «Степень с целым показателем»

1

Урок проверки, оценки и коррекции ЗУН

Индивидуальный контроль

88-89

Сбор и группировка статистических данных

2

90-92

Наглядное представление статистической информации

3

Повторение – 10 часов

93

Рациональные дроби и действия над ними

1

94-95

Преобразование выражений, содержащих квадратные корни

2

96-97

Квадратные уравнения

2

98-99

Неравенства и их системы

2

100-101

Степень с целым показателем

2

102

Итоговая контрольная работа

1

Литература:

  1. Алгебра. 8 класс: поурочные планы по учебнику Ю.Н. Макарычева и др. /   авт.-сост. А. Н. Рурукин – Вако2014 год        
  2.  Учебник для 8 класса общеобразовательных учреждений / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение, 2015 г.
  3. Дидактические материалы по алгебре 8 класс автор Л. И. Звавич, Н. В. Дьяконова –изд. Экзамен 2014
  4. Государственный стандарт основного общего образования по математике.
  5. Дидактические материалы по алгебре для 8 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. – М.: Просвещение, 2010. – 144 с.
  6. http://school-collection.edu.ru/ – единая коллекция цифровых образовательных ресурсов.


По теме: методические разработки, презентации и конспекты

Рабочая программа литература 7 класс по учебнику Коровина В.Я. Программа расчитана на 68 часов

Рабочая программа литература 7 класс по учебнику Коровина В.Я. Программа расчитана на 68 часов...

Рабочая программа по Алгебре 8кл по учебнику Мордкович

Рабочая программа по Алгебре 8 кл по учебнику Мордковича с тематическим планированием на 3 ч...

рабочая программа по алгебре 10класс по учебнику С.М. Никольского 3ч/н

Данная рабочая программа предназначена для учителей работающих в 10 классе по учебнику С.М. Никольского по трехчасовой программе, базовый уровень....

Рабочая программа по алгебре 7-9 (учебник Макарычева)

Рабочая программа содержит пояснительную записку, содержание тем, календарно-тематическое планирование, список литературы...

Рабочая программа математика 8 класс по учебнику Макарычева

Данная рабочая программа по математике составлена для учителей, преподающих по учебнику Макарычева...

Рабочая программа для 8 класса к учебнику Макарычева

Рабочая программа по алгебре для обучающихся 8 класса разработана на основе Федерального компонента государственного стандарта общего образования (приказ МО и Н РФ от 05.03.2004 года № 1089), Примерно...

рабочая программа по алгебре 8 кл.учебник Макарычев

рабочая программа по алгебре 8 кл.учебник Макарычев...