Презентация к уроку: Квадратные уравнения. Виды и способы решения.
презентация к уроку по алгебре (7 класс) на тему

Абилхаирова Айганым Халиевна

Презентация к уроку: "Квадратные уравнения. Виды и способы решения."

Скачать:

ВложениеРазмер
Файл kvadratnye_uravneniya._vidy_i_sposoby_resheniya.pptx580.46 КБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Тема урока: Квадратные уравнения. Виды и способы решения.

Слайд 2

Цель урока: Изучить и обобщить знания и умения учащихся в решении квадратных уравнений, выработать умения выбрать рациональный способ решения, способствовать развитию умения видеть и применять изученные закономерности в нестандартных ситуациях.

Слайд 3

Что перед вами? О каком событии говорят коэффициенты уравнения? 30 x ² +11 x +2013=0

Слайд 4

Урок посвящен одному из ярких и выдающихся событий нашей страны - Сочинской олимпиаде в феврале 2014г. Это особенное событие, долгожданное для всех жителей России. В относительно короткие сроки были возведены олимпийские объекты. Разработаны и построены олимпийские трассы. Но прежде чем все это было воплащенно в жизнь строителями и современной техникой, инженеры должны были произвести грамотные расчеты, основываясь на математических знаниях. Сегодня мы так же как и олимпийский огонь совершим путешествие прямо в кабинете математики в различные уголки нашей «Школьной страны». Цель нашего путешествия как можно больше узнать о видах квадратных уравнений и о способах их решений. И так, лично я уже готова отправиться в путешествие, но перед этим вы должны познакомиться с маршрутным листом.

Слайд 5

1. Станция «Теоретическая» 2. Станция «Историческая» 3. Станция «Тренажёрная» 4. Станция «Конечная»

Слайд 6

Сформулируйте определение квадратного уравнения. 2. Объясните, в чём заключается смысл ограничения в определении квадратного уравнения (а ≠ 0). 3. Какое уравнение будет называться неполным? Определение: квадратное уравнение называется не полным, если у него коэффициенты b=0 или c=0. Станция «Теоретическая»

Слайд 7

ах 2 + b х + с = 0 Дискриминант D = b 2 - 4ac D > 0 D = 0 D < 0 Два корня Х 1 , 2 = - b ± Один корень Х = - b Уравнение не имеет действительных корней 2а 2а Определив дискриминанта знак, Количество корней узнает всяк. Коль знак этот плюс, то излишни слова. У уравненья корней ровно (…) На корни внимательней я посмотрю, Коль дискриминант будет равен нулю, Тогда я поведаю, мой господин, Что в случае этом корень (…) Коль минус с тобою мы замечаем, То это радует даже лентяя. Тогда уравненье корней не имеет, И прекращается сразу решенье.

Слайд 8

Если , то корней нет. Если , то Неполные квадратные уравнения:

Слайд 9

Например: Вывод: данное уравнение решений не имеет.

Слайд 10

Например:

Слайд 11

Составьте правильный ход решения каждого уравнения: x 2 -25=0, x 2 -3x=0, x 2 +16=0. а) x(x-3)=0, б) x 2 = -16, в) (x-5)(x+5)=0, г) x-5=0, д ) x-3=0, е ) x+5=0 . Что будет являться решением каждого из уравнений: а) решений нет, б) x = -5, в) x = 3, г) x = 5 , д ) x = 0.

Слайд 12

Станция «Историческая» .

Слайд 13

. Впервые ввёл термин «квадратное уравнение» немецкий философ - Кристиан Вольф. Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Лишь в 17 в. благодаря трудам Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Слайд 14

английский математик, который ввёл термин «дискриминант». Сильвестр Джеймс Джозеф В 13 – 16 веках даются отдельные методы решения различных видов квадратных уравнений. Слияние этих методов произвел в 1544 году немецкий математик – Штифель Это было настоящее событие в математике. Михаэль Штифель.

Слайд 15

Станция «Тренажёрная» Работа со всем классом: № 210 а-з ; № 211а , б,г,д ; № 224 л.ст. Самостоятельная работа, с последующей самопроверкой.

Слайд 16

Правильные ответы: В-1 1. -1 2. 0 3. 1 4. -47 5. 2 6. -1 В-2 1. 1 2. 0 3. 2 4. 256 5. 2 6. -1,5

Слайд 17

Станция «Конечная» Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земельными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. В наше время невозможно представить себе решение как простейших , так и сложных задач не только в математике, но и в других точных науках , без применения решения квадратных уравнений. Надеюсь наш урок принес для каждого из Вас свои результаты.

Слайд 18

Домашнее задание Пункт: 4.3; 4.4. №: 213; 214; 225;231.

Слайд 19

19 До новых встреч! Желаю творческих успехов.


По теме: методические разработки, презентации и конспекты

Презентация к уроку "Квадратные уравнения" 8 класс.

Тема "Квадратные уравнения".Основная цель:Повторить и систематизировать полученные знания учащихся по данной теме....

Разработка урока: Квадратные уравнения. Виды и способы решения. (Урок путешествие).

Разработка урока в 8 классе на тему: Квадратные уравнения. Виды и способы решения. (Урок путешествие)....

Открытый урок с презентацией: "Квадратные уравнения. Виды и способы решения."

Квадратные уравнения – это фундамент, на котором покоится величественное здание алгебры. Они  находят широкое применение при решении различных тригонометрических, показательных, логарифмических, ...

презентация к уроку алгебры 7 класс "Алгебраический способ решения задач"

Первый урок по алгебре в 7 классе "Алгебраический способ решения задач" к учебнику Дорофеева Г.В....

Открытый урок «Квадратное уравнение и его корни. Решение полных квадратных уравнений»

Открытый урок для учеников 8 класса «Квадратное уравнение и его корни. Решение полных квадратных уравнений»...

Презентация к уроку "Квадратные уравнения"

В презентации : проверка домашнего задания ,найти лишнее,самостоятельная работа, задание на соответствие,от теории к практике, новые способы решения квадратного уравнения , ответы к самостоятельной ра...