Решение задач по теме "Расстояние между скрещивающимися прямыми"
презентация к уроку по алгебре (11 класс) на тему

Ященко Светлана Викторовна

Разработана совместно с учащимися 11 класса. Рассмотрены различные методы решения задач по данной теме.

Скачать:

ВложениеРазмер
Файл reshenie_zadach_s2.pptx199.77 КБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Решение задач С2. Нахождение расстояния между двумя скрещивающимися прямыми

Слайд 2

Расстояние между двумя скрещиваю- щимися прямыми равно длине отрезка их общего перпендикуляра.

Слайд 3

Для решения задач подобного типа существует несколько методов решения. 1. ( Метод построения общего пер- пендикуляра или поэтапно-вычисли - тельный метод ). В этом случае строится общий перпендикуляр двух скрещиваю- щихся прямых (отрезок с концами на этих прямых и перпендикулярный каждой из них) и находится его длина

Слайд 4

2. ( Метод параллельных прямой и плоскости ). В этом случае строится плоскость, содержащую одну из прямых и параллельную второй. Тогда искомое расстояние будет равно расстояние от ка - кой-нибудь точки второй прямой до по- строенной плоскости.

Слайд 5

3. ( Метод параллельных плоскостей ). В этом случае данные скрещивающиеся прямые заключаются в параллельные плоскости, проходящие через них, и находится расстояние между эти- ми плоскостями.

Слайд 6

Рассмотрим решение задачи В правильной треугольной призме АВСА 1 В 1 С 1, все ребра которой равны 1, найдите расстояние между прямыми АВ и СВ 1

Слайд 7

Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой . Чтобы найти расстояние между двумя скрещивающимися прямыми, нужно : 1. Через одну из прямых провести плоскость, параллельную второй прямой. 2 . Из любой точки первой прямой опустить перпендикуляр на плоскость и найти его длину. То есть задача сводится к нахождению расстояния от точки до плоскости. Это можно сделать геометрическим методом или с помощью метода координат.

Слайд 8

Решение геометрическим методом Возьмем точку М, являющуюся серединой отрезка АВ. Проведем через эту точку плоскость МСС 1. Докажем, что плоскость МСС 1 перпендикулярна прямой АВ, и, следовательно, плоскости А 1 В 1 С: Отрезок МС является медианой, и, следовательно, высотой равностороннего треугольника АВС. Прямая КМ параллельна прямой СС 1 и, следовательно, перпендикулярна АВ. То есть прямая АВ перпендикулярна двум пересекающимся прямым плоскости МСС 1, и, следовательно перпендикулярна плоскости.

Слайд 9

Теперь рассмотрим в плоскости МСС 1 прямоугольный треугольник МКС и проведем в нем высоту МР: Длина высоты МР треугольника и есть расстояние между прямыми АВ и СВ 1, которой нам нужно найти.

Слайд 10

Чтобы найти высоту МР, выразим два раза площадь треугольника МКС

Слайд 11

Аналитический способ решения задачи

Слайд 12

Нам надо выбрать систему координат таким образом, чтобы координаты точки М и точек А 1, В 1 и С, задающих плоскость А 1 В 1 С вычислялись наиболее простым способом и содержали как можно больше нулей. Поэтому удобно выбрать систему координат вот таким образом: Поместим нашу призму в систему координат. Если мы решаем задачу с кубом или прямоугольным параллелепипедом, то выбор системы координат очевиден: мы помещаем начало координат в одну из вершин куба, а оси направляем вдоль ребер. В случае призмы это не столь очевидно.

Слайд 14

Запишем координаты получившихся точек


По теме: методические разработки, презентации и конспекты

Угол между скрещивающимися прямыми

Презентация для подготовки к сдаче ЕГЭ по математике по теме "Угол между скрещивающимися прямыми"...

Угол между скрещивающимися прямыми

Презентация к уроку геометрии в 10 классе по учебнику Погорелова "Угол между скрещивающимися прямыми"....

Мастер-класс: "Нахождение расстояния между скрещивающимися прямыми"

Способы нахождения расстояния между скрещивающимися прямыми по УМК Е.В.Потоскуев, Л.И.Звавич...

Электронные дидактические материалы «Нахождение угла между скрещивающимися прямыми» для учащихся 10-11 классов

Дидактические материалы «Нахождение угла между скрещивающимися  прямыми» для учащихся 10-11 классов состоят из 33 задач уровня  С2 материалов ЕГЭ по математике....

Подготовка к ЕГЭ. Вычисление углов между скрещивающимися прямыми

Конспект урока по математике для учащихся 11 класса «Вычисление углов между скрещивающимися прямыми»...

Примеры решения задач по стереометрии (параллельность, скрещивающиеся прямые)

В начале изучения стереометрии у учащихся 10 класса часто возникают трудности с применением изученных теорем в решении задач.В данном материале рассмотрены примеры решения задач по стереометрии н...

Расстояние от точки до плоскости, от прямой до плоскости, расстояние между плоскостями, между скрещивающимися прямыми, между произвольными фигурами в пространстве

Материал для практической работы "Расстояние от точки до плоскости, от прямой до плоскости, расстояние между плоскостями, между скрещивающимися прямыми, между произвольными фигурами в пространств...