Программа элективного курса по математике «Решение задач с параметрами»
элективный курс по алгебре (11 класс) на тему

Манихина Татьяна Афанасьевна

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры обучающихся. Уравнение (неравенство) с параметром представляет собой не одно уравнение (неравенство), а целый класс обычных уравнений, для каждого из которых должно быть получено решение. Решение таких задач связано с исследовательской деятельностью, а для этого необходимо иметь определённый уровень сформированности компетенций. 

Скачать:

ВложениеРазмер
Файл programma_elektivnogo_kursa_2_gotov.docx43.08 КБ

Предварительный просмотр:

Департамент общего и профессионального образования

Брянской области

Государственное бюджетное образовательное учреждение

среднего профессионального образования

«Дятьковский индустриальный техникум»

Программа элективного курса по математике

«Решение задач с параметрами»

1 курс

Рекомендовано к использованию студентам первого курса всех специальностей подготовки

составитель: Манихина Т.А.

преподаватель математики

ГБОУ СПО « ДИТ»

Дятьково

2014 год

Пояснительная записка

На первый курс техникума приходят выпускники 9-х классов общеобразовательных школ с базовой математической  подготовкой. И, хотя они уже встречались с параметрами при решении линейных и квадратных уравнений, этот материал требует дополнительной отработки.

Программа по математике для наших студентов не предусматривает выработки прочных навыков решения задач, содержащих параметры, всеми обучающимися, и поэтому их изучение возможно только на внеклассных занятиях. Для обучающихся, которые пока не проявляют заметной склонности к математике, эти занятия могут стать толчком в развитии интереса к предмету.

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры обучающихся. Уравнение (неравенство) с параметром представляет собой не одно уравнение (неравенство), а целый класс обычных уравнений, для каждого из которых должно быть получено решение. Решение таких задач связано с исследовательской деятельностью, а для этого необходимо иметь определённый уровень сформированности компетенций.

Данный элективный курс построен как расширенное изучение темы «Задачи с параметрами». На первых занятиях с целью повторения и систематизации знаний повторяются те темы, в которых присутствует сама идея параметра. Затем обучающимся предлагаются простые задачи, которые решаются по алгоритму, с последующим их усложнением, чтобы развивать умения решать задачи, требующие более высокой математической культуры.

Материал курса способствует формированию и функциональной грамотности: умению воспринимать и анализировать информацию, представленную в различных формах, и универсальных учебных действий: наблюдать, сравнивать, анализировать, выдвигать и проверять гипотезу, обобщать полученные результаты.

Они учатся разбираться в условиях задачи, понимать, насколько эти условия достаточны для её решения, переходить от аналитической постановки задачи к её наглядной интерпретации и наоборот, отыскивать примеры и контрпримеры для подтверждения или опровержения некоего утверждения, и также видеть применение рассматриваемых задач в будущей профессии.

Одна из задач изучения курса – помочь обучающимся увидеть внутренние связи, соотношение компонентов изучаемого, сходство и различие между известным и вновь усваиваемым.

В процессе овладения курсом студенты получают первоначальные навыки исследовательской работы, подготавливая себя к последующей научно-исследовательской работе на старших курсах. Исследовательский подход позволяет применять конкретные знания к различным вариантам ситуаций, одновременно вооружая обучающихся общими методами исследования на доступном им уровне.

Место курса в учебном плане: данный курс рассчитан на 34 часа  и предназначен для изучения на 1 курсе студентами, обучающимися по всем специальностям.

Цели курса:

- формирование компетентной личности, способной к жизнедеятельности и самоопределению в информационном обществе, ясно представляющей свои потенциальные возможности, ресурсы и способы реализации выбранного жизненного пути;

- формирование представлений о математике как универсальном языке науки, средства моделирования явлений и процессов, об идеях и методах математики;

- формирование учебных умений:  наблюдать, сравнивать, анализировать,  обобщать и делать выводы;

- развитие навыков исследовательской работы;

-развитие логического мышления, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности;

- овладение различными приёмами и методами решения задач с параметрами.

Результаты освоения курса:

личностные:

обучающиеся:

- способны к жизнедеятельности и самоопределению, представляют свои возможности и готовы к изучению выбранной профессии;

- умеют увидеть внутренние связи, соотношение компонентов изучаемого, сходство и различие между известным и вновь усваиваемым;

- умеют работать с учебной и справочной литературой, интернет ресурсами.

метапредметные:

- умеют определить необходимые теоретические сведения и грамотно их применить;

- умеют выполнить необходимые обоснования и вычисления;

- имеют опыт коллективного сотрудничества с преподавателем и сверстниками;

- владеют необходимыми умениями организовать учебно – познавательную деятельность и деятельность по выполнению творческих заданий;

предметные:

обучающиеся должны уметь:

- решать уравнения, неравенства с параметрами и их системы, используя аналитический и графический методы;

- строить графики функций;

- выполнять необходимые обоснования и вычисления;

обучающиеся должны знать:

- понятие параметра;

-различные методы решения задач с параметром (аналитический, графический);

- зависимость количества решений от значений параметра;

- свойства решений уравнений, неравенств и их систем;

- свойства функций в задачах с параметрами.


СОДЕРЖАНИЕ

элективного курса по математике «Решение задач с параметрами»

для студентов 1 курса техникума

34 часа

Тема 1. Повторение. (4часа)

Введение. Повторение свойств линейной и квадратичной функций и их графиков.  Решение линейных уравнений и сводящихся к ним. Решение линейных неравенств. Решение квадратных уравнений и неравенств.

Результаты обучения:

- знают определение линейной функции и её свойства, умеют строить график, знают расположение графика в зависимости от углового коэффициента;

- знают определение квадратичной функции, её свойства, умеют строить график, знают расположение графика в зависимости от коэффициентов;

-умеют решать линейные уравнения и неравенства;

- умеют решать квадратные уравнения, различными методами;

- умеют решать квадратичные неравенства различными методами.

Тема 2. Первоначальные сведения о  параметрах. (2час)

Понятия: уравнение, неравенство, переменные величины, корни уравнения и решения неравенства, область определения уравнения (неравенства), соотношение, равносильность, ограничения к значениям переменной, семейство функций.

Параметр, решение соотношений с параметром, примеры решения уравнений с параметром.

Результаты обучения:

- знают основные понятия, связанные с уравнениями и неравенствами с параметрами.

Тема 3. Решение линейных уравнений и неравенств, содержащих параметр (7часов)

Линейные уравнения и неравенства, уравнения и неравенства приводимые к ним. Дробно- линейные уравнения и неравенства. Системы линейных уравнений и неравенств. Аналитические и графические способы решения линейных уравнений и неравенств. Определение числа корней уравнения в зависимости от параметра.

Результаты обучения:

- знают методы решения линейных уравнений, неравенств.

- умеют решать линейные уравнения и неравенства, дробно- рациональные уравнения и неравенства;

Тема 4. Решение квадратных уравнений и неравенств, содержащих параметр (7часов)

Квадратные уравнения. Взаимное расположение корней уравнения. Квадратичные неравенства. Задачи на нахождение наибольших и наименьших значений. Системы уравнений и неравенств. Уравнения, приводимые к квадратным. Аналитические и графические способы решения квадратных уравнений и неравенств. Определение числа корней уравнения в зависимости от параметра.

Результаты обучения:

- знают взаимное расположение корней квадратного уравнения,

- умеют решать квадратные и биквадратные уравнения и неравенства;

- умеют найти все значения параметра, при каждом из которых задача имеет решение, с заданными свойствами;

Тема 5. Решение уравнений и неравенств с модулем, содержащих параметр (4часов)

Понятие модуля. Методы решения уравнений с модулем.  Графический и аналитические методы решения уравнений и неравенств с модулем.

Результаты обучения:

- знают понятие модуля;

- знают методы решения уравнений и неравенств с модулем;

- умеют решать уравнения и неравенства с модулем, содержащие параметр;

-  умеют найти все значения параметра, при каждом из которых уравнение или неравенство имеет решение, с заданными свойствами.

Тема 6. Решение иррациональных уравнений и неравенств с параметром (2 часа)

Различные методы решения иррациональных уравнений и неравенств в зависимости от условия.

Результаты обучения:

- знают определения иррациональных уравнений и неравенств;

- знают методы решения иррациональных уравнений и неравенств;

- умеют решать иррациональные уравнения и неравенства;

- умеют найти все значения параметра, при каждом из которых иррациональное уравнение или неравенство имеет решение, с заданными свойствами.

Тема 7. Решение показательных и логарифмических уравнений и неравенств с параметром (4 часа)

Методы решения. Нестандартные приёмы решения. Использование свойств показательной и логарифмической функций.

Результаты обучения:

- знают определения показательного и логарифмического  уравнения и неравенства;

- знают методы решения показательных и логарифмических  уравнений и неравенств;

- умеют решать показательные и логарифмические  уравнения и неравенства;

- умеют найти все значения параметра, при каждом из которых данное уравнение или неравенство имеет решение, с заданными свойствами.

Тема 8. «Решение задач с параметром из ЕГЭ (С5)»

Итоговая контрольная работа (2часа)

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Тема занятия

Количество

часов

Учебная деятельность обучающихся

1.

Введение.

1

Осмысливают и формулируют цели элективного курса, уточняют критерии оценивания

2.

Линейные уравнения и неравенства

1

Участвуют в беседе с преподавателем, отвечают на вопросы, приводят примеры, Решают упражнения с комментированием, повторяют основные понятия, делают выводы

3.

Квадратные уравнения

1

Участвуют в беседе с преподавателем, отвечают на вопросы, приводят примеры, Решают упражнения с комментированием, повторяют основные понятия, делают выводы

4.

Квадратичные неравенства

1

Участвуют в беседе с преподавателем, отвечают на вопросы, приводят примеры, Решают упражнения с комментированием, повторяют основные понятия, делают выводы

5.

Уравнения и неравенства  с параметром. Основные понятия

2

 Слушают преподавателя, работают с учебником, составляют конспект, исследуют условие учебной задачи, формируют новые понятия

6.

Решение линейных уравнений с параметром

2

Исследуют условие учебной задачи, решают уравнения разными способами, сравнивают методы решения, анализируют, доказывают, аргументируют свою точку зрения

7.

Решение линейных неравенств с параметром

2

Проводят коллективное исследование, конструируют новый способ действий, решают неравенства разными способами, сравнивают методы решения

8.

Дробно-рациональные уравнения с параметром

1

Слушают преподавателя, исследуют условие учебной задачи, формируют новые понятия

9.

Системы уравнений и неравенств с параметром

1

Слушают преподавателя, исследуют условие учебной задачи, формируют новые понятия

10.

Самостоятельная работа №1по теме «Решение линейных уравнений и неравенств с параметрами»

1

Выполняют индивидуальную самостоятельную работу с последующей самопроверкой, анализируют допущенные ошибки

11.

Решение квадратных уравнений с параметром

2

Проводят коллективное исследование, конструируют новый способ действий, анализируют, доказывают, аргументируют свою точку зрения, решают уравнения разными способами, сравнивают методы решения

12.

Решение уравнений, содержащих параметр, сводящихся к квадратным

1

Решают упражнения с комментированием, повторяют основные понятия,  делают выводы

13.

Решение систем уравнений с параметром

1

Решают упражнения с комментированием, повторяют основные понятия, делают выводы

14.

Решение квадратичных неравенств с параметром

2

Решают упражнения с комментированием, повторяют основные понятия, решают неравенства разными способами, сравнивают методы решения, делают выводы

15.

Самостоятельная работа №2 по теме «Решение квадратных уравнений и неравенств с параметром»

1

Выполняют индивидуальную самостоятельную работу с последующей взаимопроверкой, анализируют допущенные ошибки

16.

Решение уравнений с модулем, содержащих параметр

2

Решают упражнения с комментированием, повторяют основные понятия, делают выводы

17.

Решение  неравенств с модулем, содержащих параметр

1

Проводят коллективное исследование, конструируют новый способ действий.

18.

Самостоятельная работа №2 по теме

« Решение уравнений и неравенств с модулем».

1

Выполняют самостоятельную работу в паре, анализируют, доказывают, аргументируют свою точку зрения

19.

Иррациональные уравнения и неравенства с параметром

1

Решают упражнения с комментированием, повторяют основные понятия, делают выводы.

20.

Самостоятельная работа №2 по теме «Иррациональные уравнения и неравенства с параметром»

1

Выполняют самостоятельную работу в паре, анализируют, доказывают, аргументируют свою точку зрения

21.

Показательные уравнения и неравенства  с параметром

2

Решают упражнения с комментированием, повторяют основные понятия, делают выводы

22.

Логарифмические уравнения и неравенства с параметром

1

Участвуют в беседе с преподавателем, отвечают на вопросы, приводят примеры, Решают упражнения с комментированием, повторяют основные понятия, делают выводы.

23.

Самостоятельная работа №2 по теме «Показательные и логарифмические уравнения и неравенства»

1

Выполняют самостоятельную работу  в паре, с последующей проверкой. Анализируют, доказывают, аргументируют свою точку зрения

24.

Решение задач С5 из ЕГЭ

2

Проводят коллективное исследование, анализируют, доказывают, аргументируют свою точку зрения,

25.

Итоговая контрольная работа

2

Выполняют индивидуальную контрольную работу. Проводят самоанализ достигнутых результатов.

Итого

34 часа


Учебно-методическое и материально- техническое обеспечение

Литература для преподавателя:

  1. Горбачев В.И. Методы решения уравнений и неравенств с параметрами. – Брянск: Издательство БГПУ, 1999.
  2. Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами.- М.: Илекса, Харьков: Гимназия, 2005,- 328 с.
  3. Дятлов В.И. Материалы курса «Как научить решать задачи с параметрами»: лекции 1-4.- М.: Педагогический университет «Первое сентября», 2014.- 80 с.
  4.  Дятлов В.И. Материалы курса «Как научить решать задачи с параметрами»: лекции 5-8.- М.: Педагогический университет «Первое сентября», 2014.- 72 с.

Литература для обучающихся:

  1. Мордкович А.Г., Смирнова И.М. и др. Математика. 11 класс: учебник для учащихся общеобразовательных учреждений (базовый уровень) – М.: Мнемозина, 2011. – 416 с.
  2. Рыжик В.И., Черкасова Т.Х.Дидактические материалы по алгебре и математическому анализу с ответами и решениями для 10-11 классов. Учебное пособие для профильной школы. – СПб: СМИО Пресс, 2008. – 428 с.
  3. Башмаков М.И. Алгебра и начала анализа. 10-11 кл. : учебник для общеобразовательных учреждений. – М.: Дрофа, 205. – 395 с.

Материально- техническое обеспечение:

  1. Персональный компьютер.
  2. Интерактивная доска.
  3. Проектор.
  4. Справочные таблицы.

Самостоятельные работы

Самостоятельная работа №1

по теме «Решение линейных уравнений и неравенств с параметрами»

1.Решите уравнение (относительно х): а2 х- 4х = а-2.

2. При каких значениях параметра а уравнение ах – х +1 = а2:

а) не имеет корней;

б) имеет ровно один корень;

в) имеет более одного корня?

3.Решите неравенство (относительно х): в2х – вх ≥в2 +в -2.

4. Решите систему уравнений

Самостоятельная работа №2

по теме « Решение квадратных уравнений и неравенств с параметрами»

  1. При каких значениях параметра а уравнение  ах2 +4х – а + 5 =0 :

- имеет два различных корня;

- имеет ровно один корень;

- не имеет действительных корней?

2. При каком значении а прямая у = 4х имеет только одну общую точку с графиком функции у = х2 +а?

3. При каких значениях а неравенство ах2 + 4х – 3 + а > 0:

- выполняется при любых х;

- не имеет решений?

 4. Найдите все значения параметра а, при каждом из которых система неравенств   имеет единственное решение?

Самостоятельная работа №3

по теме «Решение уравнений и неравенств с модулем».

  1. Решите уравнение
  2. Решите неравенство < х.
  3. Решите неравенство
  4. Найдите все значения параметра а, при которых уравнение

= 2 +  имеет единственное решение.

Самостоятельная работа №4

по теме « Иррациональные уравнения и неравенства»

  1.  Решите уравнение относительно х:(х – а)  = 0.
  2.  Решите уравнение относительно х: = а – х.
  3.  Решите неравенство относительно х:  0.

Самостоятельная работа №5

по теме « Показательные и логарифмические уравнения и неравенства»

  1. Найдите все значения параметра а, при которых уравнение  

 

  1. Решите неравенство < а.

Итоговая контрольная работа

1. Решите неравенство ах – 1  0.

а) При каких значениях а решением неравенства является х = 2?

б) При каких значениях а любое решение данного неравенства меньше 1?

в) При каких значениях а любое число, модуль которого меньше 1, является решением данного неравенства?

2. Определите значения а, при которых график функции у = 2х2 + х + а лежит выше оси абсцисс.

3. При каких значениях параметра а  корни уравнения ах2 + х + 1 = 0 удовлетворяют условию

4. При каких значениях параметра а  имеет единственное решение   уравнение  –  = ах ?

5. При каких значениях а не имеет решений неравенство

 ?

6.При каких значениях в система уравнений имеет: единственное решение, бесконечное множество решений, не имеет решений


По теме: методические разработки, презентации и конспекты

ПРОГРАММА ЭЛЕКТИВНОГО КУРСА ПО МАТЕМАТИКЕ «РЕШЕНИЕ ТЕКСТОВЫХ ЗАДАЧ»

Этот элективный курс позволяет сгладить противоречия, которые возникают при изучении данной темы в школе и в предлагаемых вариантах ЕГЭ. Он предназначен для предпрофильной подготовки учащихся 9-х кла...

Рабочая программа элективного курса по математике "Решение задач с модулем и параметрами" для 9 класса

Рабочая прогамма элективного курса по математике "Решение задач с модулем и параметрами" для 9 класса составлена в соответствии с федеральным компонентом Государственного образовательного стандарта ос...

Программа элективного курса по математике «Решение математических задач»

Данный элективный курс «Решение математических задач» своим содержанием может привлечь внимание учащихся 7 классов....

Программа элективного курса по математике"Решение прикладных задач с экономическим содержанием"

Программа элективного курса по  математике"Решение прикладных задач с экономическим содержанием"...

РАБОЧАЯ ПРОГРАММА: элективный курс по математике «Решение нестандартных задач», 11 класс

Программа элективного курса «Решение нестандартных задач» для обучающихся 11 класса общеобразовательных учреждений разработана на основе: авторской адаптационной программе факультативного ...

РАБОЧАЯ ПРОГРАММА: элективный курс по математике "Решение нестандартных задач", 9 класс

Курс рассчитан на учащихся 9 классов  школы и предполагает совершенствование подготов­ки школьников по освоению основных разделов математики, дополнение углубленного курса математики основной...


 

Комментарии

Грибачева Виктория Владимировна

Хорошо составленная программа. Большое спасибо

Грибачева Виктория Владимировна

Хорошо составленная программа. Большое спасибо