Разработки уроков математики в 5-м классе
план-конспект урока по алгебре (5 класс) по теме
Данные разработки можно использовать на уроках математики в 5-м класе на тему "Деление"
Скачать:
Вложение | Размер |
---|---|
razrabotki_urokov_po_matematike_5_klass.docx | 116.3 КБ |
Предварительный просмотр:
Урок № 44
Деление (п. 12)
Цели: научить формулировать ответ на вопрос: «Какое действие называется делением?», повторить, как называются числа при делении, выработать навык деления натуральных чисел.
Оборудование: на доске записать план изучения новой темы.
Ход урока
I. Устные упражнения.
1. Какой ряд быстрее сосчитает? (По количеству поднятых рук).
№ 493 (а, б).
2. № 497, 501 (вместо «подчеркнуть» употребите слово «назвать»).
II. Изучение нового материала (идет по вопросам плана).
1. Определение действия деления.
Решают задачу из текста и формулируют определение действия деления; читают несколько раз, 2–3 ученика формулируют это определение, и затем каждый своему соседу дает это определение.
2. Как называются числа при делении:
3. Что показывает частное? (Ответ сами ученики находят в учебнике).
4. Всегда ли возможно деление?
В тетради ученики записывают: Ни одно число нельзя делить на нуль.
5. Свойство единицы и нуля при делении.
а : 1 = а а : а = 1 0 : а = 0.
III. Закрепление.
1. Ученикам предлагается по учебнику найти ответы на вопросы плана.
2. № 473 (а–г) – комментирование с места.
3. Устно № 474 (а, б); 465; 467; 466.
4. № 472 (а, в, г, д, е, к).
5. Ответить на вопросы 1–4 к п. 12.
IV. Итог урока.
1. Найти значение выражения:
а) 285 : с, если с = 1; с = 3; с = 19.
б) d : 8, если d = 0; d = 96; d = 14.
2. Делимое в 14 раз больше частного. Можно ли найти делитель?
3. Каков правильный ответ?
В равенстве (а – 37) : (b +43) = 5 выражение (b + 43) является
а)частным; б) делителем; в) делимым.
IV. Домашнее задание: п. 12; № 517 (а, в); 518 (а, б), 515.
Заполнить таблицу.
а | b | a b | a : b |
42 | 6 | ||
7 | 98 | ||
36 | 144 | ||
5 | 15 | ||
63 | 21 |
Урок № 45
Деление (п. 12)
Цель: закрепить свойства деления.
Оборудование: пленки к кодоскопу по проверке домашней работы.
Ход урока
I. Проверка домашней работы (пленка к кодоскопу).
Учащиеся обменялись тетрадями и сверяют решения с экраном.
II. Устные упражнения (проверяют два ученика).
1. Продумайте , как проще выполнить умножение, и вычислите:
а) 19 2 5; б) 4 27 25; в) 13 6 50.
2. Угадайте корни уравнения: 15 а = 15 : а.
3. Из данных выражений составьте верные равенства:
Можно соединить графами.
4. Вставьте вместо кружков знаки арифметических действий и при необходимости скобки так, чтобы равенства были верными.
а) 100 o 8 o 6 = 52
б) 100 o 8 o 6 = 86
в) 100 o 8 o 6 = 98
III. Работа по теме урока.
1. Устно: № 474 (в, г); № 476; № 478 (а).
2. № 473 (д, е); 468, 469 (с комментированием).
№ 472 (б, з, и).
3. На повторение: № 499 (а); 500 (а); 506.
IV. Итог урока.
1. Составьте выражения для решения задачи.
а) Ракета пролетела за t мин 23380 км. С какой скоростью летела ракета?
б) d : 8, если d = 0; d = 96; d = 14.
2. Ракета пролетела S км со скоростью 540 км/мин.
Сколько минут летела ракета?
V. Домашнее задание: п. 12; № 517 (б, г), 518 (в), 514, 520.
Урок № 46
Деление (п. 12)
Цели: научить находить неизвестный множитель, делимое, делитель.
Оборудование: девиз урока «Чем больше я знаю, тем больше умею»; плакаты на каждый этап устных упражнений.
Ход урока
I. Устные упражнения (проводят ученики).
1. Первый ученик: «Отгадайте кроссворд».
1 | 6 | |||||
2 | ||||||
3 | ||||||
4 | ||||||
5 |
По горизонтали:
1) Геометрическая фигура:
2) Символ, с помощью которого обозначают натуральные числа.
3) Инструмент для проведения отрезков.
4) Результат сложения.
5) Результат деления.
По вертикали: 6) Знак одного из действий.
2. Второй ученик предлагает задание. Вычислить:
3. Третий ученик: «Отгадайте корень уравнения».
а) z + z = z z;
б) 16 : b = 16 b.
II. Работа по теме урока.
1. Устно № 475, 478 (б, в), 483.
2. Перед выполнением следующих заданий нужно задать вопросы:
а) Какое равенство называется уравнением?
б) Какое число называется корнем уравнения?
в) Что значит решить уравнение?
г) Как проверить, верно ли решено уравнение?
3. Решить: № 482 (а, б, г) – трое учеников одновременно решают у доски, затем класс проверяет их решение.
№ 485 (а, в); 487 (а).
4. На повторение: 499 (б), 501 (б).
Можно соединить графами.
III. Самостоятельная работа (по вариантам).
Вариант I | Вариант II |
1) Найти частное: | |
а) 6237 : 9 б) 61596 : 87 в) 15792 : 329 | а) 3424 : 8 б) 35088 : 86 в) 13608 : 243 |
2) Решить задачу из учебника | |
№ 512 (1) | № 512 (2) |
3) Частное меньше делимого в 12 раз. Можно ли найти делитель? | 3) Произведение в 27 раз больше одного из двух множителей. Можно ли найти другой множитель? |
4) Найти значение выражения: | |
а) 1326 : t, если t = 1; t = 6; t = 17. б) l : 15, если l = 0; l = 120; l = 210. | а) 1672 : р, если р = 1, р = 8, р = 19. б) k : 12, если k = 0; k = 108; k = 168. |
IV. Домашнее задание: п. 12 (2-я часть); № 524 (а, б, в), 516, 519, 527 (а, д).
Урок № 47
Деление. Свойства деления (п. 12)
Цели: научить находить неизвестный множитель, делимое, делитель.
Ход урока
I. Проверка домашнего задания.
Консультанты докладывают о выполнении домашнего задания. Отмечают аккуратно выполненные работы.
II. Устные упражнения.
1. № 493 (д) (какой ряд быстрее сосчитает?).
2. № 495.
3. Вопросы по таблице домашнего задания.
а) Во сколько раз скорость автомобиля «Волга» больше скорости почтового голубя?
б) Во сколько раз скорость улитки меньше скорости пчелы?
в) На сколько км/ч скорость автомобиля «Ока» больше скорости верблюда?
III. Работа по теме урока.
1. № 464, 482 (б), 487 (в. г), 490, 488, 471 (а, б), 477, 486 (а, б).
2. На повторение: № 499 (в), 501, 502 (а, г).
IV. Итог урока.
1. № 485 (б, г).
2. Повторить теоретический материал п. 12.
V. Домашнее задание: п. 12; № 524 (г, д); 521, 523, 526 (а); 554 (б, е)
Урок № 48
Деление (п. 12)
Цели: вырабатывать навык деления натуральных чисел и применения свойств деления.
Оборудование: плакат для логического теста.
Ход урока
I. Устные упражнения.
1. Среди чисел 10; 20; 0 найти корень уравнения: у 10 = у : 10.
2. № 498.
3. Логический тест № 1. Анаграммой называется слово, в котором поменялись местами все или несколько букв в сравнении с исходным словом. Решить анаграмму – означает определить исходное слово.
Учитель вывешивает плакат с анаграммами.
Ответ: 1) прямая, луч, отрезок, периметр.
2) Лишнее слово «периметр», так как «периметр» – метрическая величина, а «прямая», «луч», «отрезок» – геометрические фигуры.
4. Логический тест № 2 (символико-графического типа).
II. Работа по теме урока.
1. Устно № 491, 478.
2. № 492 (а) – с разбором, № 492 (б) – самостоятельно, № 472.
3. На повторение: № 502, 511.
4. Самостоятельная работа обучающего характера.
(До начала урока пересадить учащихся так, чтобы в паре были «сильный» – «слабый»).
№ 472 (ж, л); 470; 487 (б, е); 479.
III. Домашнее задание.
п. 12; № 524 (е); 525; 522; 526 (б); 527 (в).
Урок № 49
Деление (п. 12)
Поэтическое звучание темы: Скорость, расстояние, время и таинственные отношения между ними
«Я люблю математику не только потому, что
она находит применение в технике, но и потому,
что она красива».
Петер Ропсе
Оборудование: тексты задач на плакатах; ксерокопии листов с домашним заданием; плакаты с высказываниями о задачах; костюм для дяди Степы-милиционера.
«Математическая задача иногда столь же увлекательна, как кроссворд, и напряженная умственная работа может быть столь же желанным упражнением, как стремительный теннис».
Д. Пойа
«Недостаточно лишь понять задачу, необходимо желание решить ее. Без сильного желания решить трудную задачу невозможно, но при наличии такового возможно. Где есть желание, найдется путь!»
Д. Пойа
«При решении задачи плохой план часто оказывается полезным, он может вести к лучшему плану».
Д. Пойа
«В задачах, которые ставит перед нами жизнь экзаменатором является сама природа».
У. Сойер
Ход урока
I. Устные упражнения.
На доске записаны краткие условия задач.
1. Из пунктов А и В навстречу друг другу выехали автомобиль со скоростью 60 км/ч и велосипедист со скоростью 15 км/ч. Встретятся ли автомобиль и велосипедист через 2 часа, если расстояние между пунктами 160 км? (Решить задачу двумя способами.)
2. Из лагеря геологоразведчиков выехал вездеход со скоростью 30 км/ч. Через 2 часа вслед за ним был послан другой вездеход. С какой скоростью он должен ехать, чтобы догнать первый через 4 часа после своего выхода? (Можно сделать чертеж к задаче.)
II. Работа по теме урока.
1. Повторить, как найти расстояние, время, скорость, и решить задачи.
2. По рисунку составить задачу на движение и решить ее.
3. Викторина (3 ученика).
а) Первый ученик: «Автомобиль «Москвич» за 3 часа может проехать 360 км. Бескрылая птица страус – лучший бегун в мире – развивает скорость до 120 км/ч. Сравните скорости автомобиля «Москвич» и страуса».
б) Второй ученик предлагает классу свою задачу.
«Скорость распространения света самая большая в природе – 300000 км/с. На Солнце произошла вспышка. Через какое время ее увидят на Земле, если расстояние от Земли до Солнца равно 150000000 км?
в) Третий ученик:
«Пройденный путь пешехода S, его скорость и время движения t связаны соотношением S = t. Если пешеход за 4 часа прошел 24 км, то его скорость равна:
1) 12 км/ч; 2) 6 км/ч; 3) 96 км/ч; 4) 8 км/ч.
4. Решить олимпиадную задачу.
Из пунктов А и В, расстояние между которыми 100 км, со скоростями 20 км/ч и 30 км/ч выезжают навстречу друг другу два велосипедиста. Вместе с ними со скоростью 50 км/ч вылетают две мухи, летят до встречи, поворачивают и летят обратно до встречи с велосипедистами, снова поворачивают и т. д. Сколько километров пролетит каждая муха в направлении от А до В до того момента, когда велосипедисты встретятся?
Решение: Велосипедисты встретятся через 2 часа на расстоянии 40 км/ч от А. За это время каждая муха пролетела 100 км. Муха, вылетевшая из А, пролетела в направлении от А до В на 40 км больше, чем в обратном направлении, и поэтому от АВ она пролетела 70 км. Аналогично, вторая муха в направлении от А к В пролетела на 60 км меньше, чем в обратном, то есть 20 км.
Ответ: первая муха в направлении от А к В пролетела 70 км, вторая – 20 км.
5. Входит дядя Степа-милиционер и предлагает задачу из сборника задач по основам безопасности дорожного движения.
а) Ширина проезжей части дороги 15 м, зеленый сигнал светофора горит 20 секунд. С какой наименьшей скоростью может двигаться пешеход с момента загорания светофора, чтобы благополучно перейти дорогу?
Решение:
1) 15 м = 1500 см
2) 1500 : 20 = 75 см/с.
Ответ: пешеход может двигаться со скоростью 75 см/с.
б) Мотоциклист едет со скоростью 95 км/ч, а скорость велосипедиста на 76 км/ч меньше. Во сколько раз скорость мотоциклиста больше скорости велосипедиста? Кому из них легче остановиться?
Решение:
1) 95 – 76 = 19 км/ч
2) 95 : 19 = 5 раз.
Ответ: в 5 раз легче остановиться велосипедисту, так как при меньшей скорости короче тормозной путь.
III. Итог урока.
Отметить особо отличившихся учеников, если есть возможность, то наградить сувенирами.
VI. Домашнее задание: ученикам раздаются ксерокопии заданий.
1) Помогите французским девочкам.
Однажды Жанин и Моника поплыли по маленькой речке, отправившись из одного и того же места, но только Жанин поплыла против течения, а Моника поплыла по течению. Оказалось, что Моника забыла снять большие деревянные бусы. Через четверть часа девочки повернули обратно. Кто же из них подберет бусы Моники: сама Моника или Жанин? (Скорость обеих пловчих в неподвижной воде одинакова.)
2) Задача от дяди Степы.
Скорость легкового автомобиля 60 км/ч, а грузовика 15 км/ч. Во сколько раз скорость легкового автомобиля больше скорости грузовика? Какой автомобиль опаснее для школьника, начавшего движение по пешеходному переходу?
3) Задание от «Знающего человека». Заполнить таблицу.
Объект | Скорость | Время t | Расстояние S |
«Волга» | 100 км/ч | 5 ч | |
«Ока» | 60 км/ч | 420 км | |
«Москвич» | 3 ч | 240 км | |
Пчела | 60 км/ч | 180 км | |
Стрекоза | 2 ч | 200 км | |
Стриж | 100 км/ч | 4 ч | |
Меч-рыба | 100 км/ч | 300 км | |
Земля (вокруг Солнца) | 30 км/ч | 24 ч | |
Черепаха | 6 мин | 18 м | |
Улитка | 7 ч | 35 км | |
Верблюд | 8 км/ч | 5 ч | |
Почтовый голубь | 50 км/ч | 150 км |
4) Составить по одной анаграмме.
Ответы для учителя.
Задача № 1
Скорости девушек относительно неподвижной воды одинакова. Но ведь по отношению к воде в реке бусы остаются неподвижными – они движутся в точности с такой же скоростью, что и вода (со скоростью течения). Пловчихи проплывают относительно воды одинаковое расстояние и по истечении получаса встречаются в том месте, где в этот момент находятся бусы. Таким образом, обе девушки могут подобрать бусы с равным основанием, так как встречаются в тот самый момент, когда подплывут бусы.
Задача № 2
Опаснее легковой автомобиль, так как у него скорость больше, кроме того, для водителя легкового автомобиля мальчик появится неожиданно, так как обзор будет закрыт грузовым автомобилем.
Урок № 50
Деление с остатком (п. 13)
Цели: объяснить учащимся, что деление натурального числа на другое нацело не всегда возможно; научить называть компоненты при делении с остатком и выполнять деление.
Оборудование: пленка для устных упражнений; кодоскоп.
Ход урока
I. Устные упражнения.
1. № 540 (а, б, в), 541 (а, б) – просвечивается на экран.
2. Учащиеся из своего домашнего задания задают анаграммы классу.
II. Изучение нового материала.
1. Ученики читают каждый абзац пункта, обсуждают и озаглавливают, в результате получается примерно такой конспект:
а) Деление одного натурального числа на другое нацело не всегда возможно;
б) При делении с остатком числа называются так.
в) Остаток всегда меньше делителя;
г) Чтобы найти делимое при делении с остатком, надо умножить неполное частное на делитель и к полученному произведению прибавить остаток.
23 = 4 5 + 3.
III. Закрепление.
1. Ответить на вопросы п. 13.
2. № 533 (д, б, в), 533 (а, е), 532 (3-я строка); 538.
3. На повторение. № 548 (3, 4) – самостоятельно.
IV. Итог урока.
Тест
1) При делении числа на 46 может получиться остаток:
а) 48; б) 45; в) 46; г) 47.
2) Скорость пешехода 5 км/ч, а скорость велосипедиста 20 км/ч. Во сколько раз скорость велосипедиста больше скорости пешехода?
а) в 2 раза; б) в 3 раза; в) в 4 раза; г) на 15 км/ч.
3) За 3 часа теплоход проплыл 105 км, а поезд за 2 часа проехал 110 км. Во сколько раз скорость поезда больше скорости теплохода?
а) в 4 раза; б) в 3 раза; в) в 2 раза.
V. Домашнее задание: п. 13 (уметь пересказать конспект); № 550 (а, в); 552; 553 (а); 555 (а, г), повторить п. 12.
По теме: методические разработки, презентации и конспекты
методическая разработка урока математики в 5-м классе по теме "Уравнения. Решение задач с помощью уравнений"
в данной работе изложен материал,который может быть полезен при проведении открытого урока....
Разработка урока математики в 6-ом классе по теме: «Умножение десятичных дробей на 10, 100, 1000, …»
Вашему вниманию предлагаю конспект урока, разработанный по учебнику «Математика-6» Г.В. Дорофеева, И.Ф. Шарыгина, С.Б. Суворовой и др. Этот урок проходит в виде игры, в процессе которой использу...
Разработка урока математики для 5-го класса "Все действия с десятичными дробями"
Данный урок посвящён Году экологии - 2013. В разработке можно найти много интересных фактов, касающихся охраны окружающей среды, которые применимы на уроке математики....
Разработка урока математики для 5-го класса "Все действия с десятичными дробями"
Данный урок посвящён Году экологии - 2013....
Методическая разработка урока математики в 5-м классе по теме: "Дроби вокруг нас"
разработка содержит конспект урока для 5 класса...
Методическая разработка уроков математики для 5-6 классов с использованием приемов для интеллектуального и духовного развития, посвященная 70 - летию Великой Победы
Вокруг нас дети, независимо от того педагоги мы или родители. А дети нуждаются, прежде всего, в духовном питании, ведь так с латыни переводится слово воспитание. Современные условия ...
Методическая разработка урока математики в 6-м классе по теме «Решение задач с помощью уравнений» Урок математики в 6-м классе по теме «Решение задач с помощью уравнений»
Тип урока: введение новых знаний. Цели:Личностные: способность к эмоциональному восприятию математических объектов, умение ясно и точно излагать свои мысли.Метапредметные: умение понимать и испол...