Золотле сечение
учебно-методический материал по алгебре (7 класс) на тему
Предварительный просмотр:
Золотое сечение
Если разделить любой отрезок на две части так, чтобы отношение большей части отрезка к целому было равно отношению меньшей части к большей, получим сечение, которое называют золотым
На рисунке отрезок АВ разделен точкой С так, что АС : АВ = СВ : АС. Обозначим это отношение Ф. Если принять длину отрезка АВ за a, а большую часть отрезка (АС) за b, то a:b = b:(a-b).
Отношение большей части отрезка к меньшей и всей длины отрезка к большей его части (Ф) равно приблизительно 1,618... Обратная величина - отношение меньшей части отрезка к большей и большей части к всему отрезку - составляет примерно 0,618...
Эти числа получили название "золотых". Они действительно замечательные. Везде, где человек ощущает гармонию - в звуках, в цвете, в размерах, - всюду присутствует "Золотое число". Глаз радуется отрезку, разделенному не строго пополам, а именно в пропорции 0,618:0,382. Может, поэтому так часто находят золотое сечение в памятниках античной архитектуры, в пропорциях идеальных человеческих фигур, вылепленных великими Фидием и Поликлетом, в классических музыкальных произведениях (еще пифагорейцы заметили, что музыкальный звукоряд построен по закону частот, равных "золотому числу"), живописи, поэзии, формах скрипок Страдивари, а также в природе – химии, ботанике, зоологии...
Соразмерность, выражаемая числом Ф, по свидетельству многих исследователей, наиболее приятна для глаза. Леонардо да Винчи считал, что идеальные пропорции человеческого тела должны быть связаны с числом Ф. Именно он назвал деление отрезка в отношении Ф золотым сечением. Этот термин сохранился до наших дней. В эпоху Возрождения золотое сечение было очень популярно среди художников, скульпторов и архитекторов. Например, в большинстве живописных пейзажей линия горизонта делит полотно по высоте в отношении, близком к Ф. А выбирая размеры самой картины, старались, чтобы отношение ширины к высоте тоже равнялось Ф. Такой прямоугольник стали называть "золотым".
История Золотого сечения
Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.
Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.
Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей» посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.
В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.
В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида. Во 2-й книге «Начал» дается геометрическое построение золотого деления После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.
В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась «О перспективе в живописи». Его считают творцом начертательной геометрии.
Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли «Божественная пропорция» с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее «божественную суть» как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок – бога отца, а весь отрезок – бога духа святого).
Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.
В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. «Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать».
Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица – ртом и т.д. Известен пропорциональный циркуль Дюрера.
Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).
Кеплер называл золотую пропорцию продолжающей саму себя «Устроена она так, – писал он, – что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности».
Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).
Если на прямой произвольной длины, отложить отрезок m, рядом откладываем отрезок M. На основании этих двух отрезков выстраиваем шкалу отрезков золотой пропорции восходящего и нисходящего рядов:
В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы «вместе с водой выплеснули и ребенка».
Вновь «открыто» золотое сечение было в середине XIX в. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой».
Построение золотого сечения.
Для того, чтобы разделить отрезок АВ в "золотом" отношении, достаточно выполнить следующие построения с помощью циркуля и линейки:
Из точки В восстанавливается перпендикуляр, равный половине АВ.
Полученная точка С соединяется линией с точкой А.
На полученной прямой от точки С откладывается отрезок CD, равный ВС.
На прямой AB откладывается отрезок AE=AD. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.
Золотое сечение можно найти, рассматривая некоторые геометрические фигуры.
Пятиконечная звезда, получаемая при последовательном соединении через одну всех вершин правильного пятиугольника (пентаграмма), всегда привлекала внимание людей совершенством формы. Пифагорейцы именно ее выбрали символом своего союза. В этой фигуре наблюдается удивительное постоянство отношений составляющих ее отрезков.
На рисунке AD:AC = AC:CD = AB:BC = AD:AE = AE:EC. Пользуясь симметрией звезды, этот ряд равенств можно продолжить. Все эти отношения равны числу Ф (1,618...).
Для построения "золотого прямоугольника" в качестве смежных сторон возьмем длины сторон АВ и АК треугольника АВК.
Если от "золотого прямоугольника" отрезать квадрат, то опять получится "золотой прямоугольник"; так можно продолжать до бесконечности. На рисунке видно, что если провести диагонали первого и второго прямоугольников, то их точка пересечения О будет принадлежать всем получаемым "золотым прямоугольникам".
Бывает и "золотой треугольник". На рисунке с пентаграммой это равнобедренные треугольники FEG, EAC, BEC, у которых отношение длины боковой стороны к длине основания равняется Ф. Одно из замечательных свойств такого треугольника состоит в том, что длины биссектрис углов при его основании равны длине самого основания.
Есть и "золотой кубоид" - это прямоугольный параллелепипед с ребрами Ф (1,618...), 1 и ф (0,618...). Площадь его поверхности равна 4Ф, а диагональ - 2. Отсюда следует, что описанная вокруг него сфера имеет радиус 1, и, значит, ее площадь равна 4. Поэтому отношение поверхности этой сферы к поверхности "золотого кубоида" равно :Ф.
Представление о золотом сечении и "золотых" фигурах будет неполным, если не сказать о спирали. Если посмотреть на раковину улитки, можно заметить, что она закручена по очень красивой спирали, которая близка к так называемой логарифмической спирали. Логарифмическая спираль в полярных координатах описывается уравнением r=aw, где r - расстояние от точки до полюса, w - угол поворота, a - некоторая константа. Графическое приближение "золотой спирали" можно построить, соединив дугами точки квадратов, отсеченных от золотого прямоугольника при построении новых золотых прямоугольников.
Золотое сечение в архитектуре
В книгах о «золотом сечении» можно найти замечание о том, что в архитектуре, как и в живописи, все зависит от положения наблюдателя, и что, если некоторые пропорции в здании с одной стороны кажутся образующими «золотое сечение», то с других точек зрения они будут выглядеть иначе. «Золотое сечение» дает наиболее спокойное соотношение размеров тех или иных длин.
Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.).
На рисунках виден целый ряд закономерностей, связанных с золотым сечением. Пропорции здания можно выразить через различные степени числа Ф=0,618...
На плане пола Парфенона также можно заметить "золотые прямоугольники":
Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. выступы сделаны целиком из квадратов пентилейского мрамора. Благородство материала, из которого построен храм, позволило ограничить применение обычной в греческой архитектуре раскраски, она только подчеркивает детали и образует цветной фон (синий и красный) для скульптуры. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по «золотому сечению», то получим те или иные выступы фасада.
Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.
Что касается пирамид, не только египетские пиpамиды постpоены в соответствии с совеpшенными пpопоpциями золотого сечения; то же самое явление обнаpужено и у мексиканских пиpамид. Hа попеpечном сечении пиpамиды видна фоpма, подобная лестнице. В пеpвом яpусе 16 ступеней, во втоpом 42 ступени и в тpетьем - 68 ступеней.
Эти числа основаны на соотношении Фибоначчи следующим обpазом:
16 x 1.618 = 26
16 + 26 = 42
26 x 1.618 = 42
42 + 26 = 68
Числа Фибоначчи и золотое сечение
Одним из наиболее известных математиков эпохи Средневековья по праву считается Леонардо Фибоначчи. По иронии судьбы Фибоначчи, который внес выдающийся вклад в развитие математики, стал известным в современной математике только лишь как автор интересной числовой последовательности, называемой числами Фибоначчи. Эта числовая последовательность была получена Фибоначчи при решении знаменитой "задачи о размножении кроликов". Формулировка и решение этой задачи считается основным вкладом Фибоначчи в развитие комбинаторики. Именно с помощью этой задачи Фибоначчи предвосхитил метод рекуррентных соотношений, который считается одним из мощных методов решения комбинаторных задач. Рекуррентная формула, полученная Фибоначчи при решении этой задачи, считается первой в истории математики рекуррентной формулой.
Сущность своей "задачи о размножении кроликов" Фибоначчи сформулировал предельно просто:
"Пусть в огороженном месте имеется пара кроликов (самка и самец) в первый день января. Эта пара кроликов производит новую пару кроликов в первый день февраля и затем в первый день каждого следующего месяца. Каждая новорожденная пара кроликов становится зрелой уже через месяц и затем через месяц дает жизнь новой паре кроликов. Возникает вопрос: сколько пар кроликов будет в огороженном месте через год, то есть через 12 месяцев с начала размножения?"
Месяц | Количество | Кол-во | Общее |
1 | 1 | 0 | 1 |
2 | 1 | 1 | 2 |
3 | 2 | 1 | 3 |
4 | 3 | 2 | 5 |
5 | 5 | 3 | 8 |
6 | 8 | 5 | 13 |
Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21 : 34 = 0,617, а 34 : 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение – 0,618 : 0,382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.
Изучая последовательности чисел, обозначающих количество пар кроликов, можно установить следующую закономерность в этих числовых последовательностях: каждый член последовательности, начиная с некоторого номера, равен сумме двух предыдущих. Если теперь обозначить n-й член последовательности, удовлетворяющей этому правилу через Fn , тогда указанное выше общее правило может быть записано в виде следующей математической формулы:
Fn = Fn-1 + Fn-2.
Такая формула называется рекуррентной формулой.
В математике под числами Фибоначчи, как правило, понимается числовая последовательность:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
Если в ряду чисел Фибоначчи взять отношение последующего члена к предыдущему или наоборот, то получим уже знакомые нам числа: 1,618 и 0,618. Причем, чем больше порядковые номера членов, тем точнее выполняется "золотое" соотношение.
Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления.
Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта. Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.
Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений.
Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд гирь 1, 2, 4, 8, 16... на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой 2 = 1 + 1; 4 = 2 + 2..., во втором – это сумма двух предыдущих чисел 2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2.... Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи? А может быть, эта формула даст нам новые числовые множества, обладающие какими-то новыми уникальными свойствами?
Золотое сечение в живописи
Переходя к примерам «золотого сечения» в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность – одна из загадок истории. Сам Леонардо да Винчи говорил: «Пусть никто, не будучи математиком, не дерзнет читать мои труды».
Он снискал славу непревзойденного художника, великого ученого, гения, предвосхитившего многие изобретения, которые не были осуществлены вплоть до XX в.
Нет сомнений, что Леонардо да Винчи был великим художником, это признавали уже его современники, но его личность и деятельность останутся покрытыми тайной, так как он оставил потомкам не связное изложение своих идей, а лишь многочисленные рукописные наброски, заметки, в которых говорится «обо всем на свете».
Он писал справа налево неразборчивым почерком и левой рукой. Это самый известный из существующих образец зеркального письма.
Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. Существует очень много версий об истории этого портрета. Вот одна из них.
Однажды Леонардо да Винчи получил заказ от банкира Франческо де ле Джокондо написать портрет молодой женщины, жены банкира, Монны Лизы. Женщина не была красива, но в ней привлекала простота и естественность облика. Леонардо согласился писать портрет. Его модель была печальной и грустной, но Леонардо рассказал ей сказку, услышав которую, она стала живой и интересной.
Еще в эпоху Возрождения художники открыли, что любая картина имеет определенные точки, невольно приковывающие наше внимание, так называемые зрительные центры. При этом абсолютно неважно, какой формат имеет картина - горизонтальный или вертикальный. Таких точек всего четыре, они делят величину изображения по горизонтали и вертикали в золотом сечении, т.е. расположены они на расстоянии примерно 3/8 и 5/8 от соответствующих краев плоскости.
Данное открытие у художников того времени получило название "золотое сечение" картины. Поэтому, для того чтобы привлечь внимание к главному элементу фотографии, необходимо совместить этот элемент с одним из зрительных центров.
На картине И.И. Шишкина "Сосновая роща" просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины приблизительно в золотом сечении. Справа от сосны - освещенный солнцем пригорок. Он делит в золотом сечении правую часть картины по горизонтали. Слева от главной сосны находится множество сосен - при желании можно с успехом продолжить деление картины в пропорциях золотого сечения.
Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении золотого сечения, придает ей характер уравновешенности и спокойствия, в соответствии с замыслом художника. Когда художник создает картину с бурно развивающимся действием, подобная геометрическая схема композиции (с преобладанием вертикалей и горизонталей) становится неприемлемой.
Ощущение динамики, волнения проявляется, пожалуй, сильней всего в другой простой геометрической фигуре - спирали. Многофигурная композиция, выполненная в 1509 - 1510 годах Рафаэлем, когда прославленный живописец создавал свои фрески в Ватикане, отличается динамизмом и драматизмом сюжета. Рафаэль так и не довел свой замысел до завершения, однако, его эскиз был гравирован неизвестным итальянским графиком Маркантинио Раймонди, который на основе этого эскиза и создал гравюру "Избиение младенцев".
Если на подготовительном эскизе Рафаэля мысленно провести линии, идущие от смыслового центра композиции - точки, где пальцы воина сомкнулись вокруг лодыжки ребенка, - вдоль фигур ребенка, женщины, прижимающей его к себе, воина с занесенным мечом и затем вдоль фигур такой же группы в правой части эскиза (на рисунке эти линии проведены красным цветом), а после этого соединить эти куски кривой пунктиром, то с очень большой точностью получается золотая спираль. Это можно проверить, измеряя отношение длин отрезков, высекаемых спиралью на прямых, проходящих через начало кривой.
Неизвестно, рисовал ли на самом деле Рафаэль золотую спираль при создании композиции "Избиение младенцев" или только "чувствовал" ее. Однако с уверенностью можно сказать, что гравер Раймонди эту спираль увидел. Об этом свидетельствуют добавленные им новые элементы композиции, подчеркивающие разворот спирали в тех местах, где она у нас обозначена лишь пунктиром. Эти элементы можно увидеть на окончательной гравюре Раймонди: арка моста, идущая от головы женщины, - в левой части композиции и лежащее тело ребенка - в ее центре.
Золотая пропорция применялась многими античными скульпторами. Известна золотая пропорция статуи Аполлона Бельведерского: рост изображенного человека делится пупочной линией в золотом сечении.
Золотое сечение в шрифтах и бытовых предметах:
Золотое сечение в живой природе
В биологических исследованиях 70-90 гг. показано, что, начиная с вирусов и растений и кончая организмом человека, всюду выявляется золотая пропорция, характеризующая соразмерность и гармоничность их строения. Золотое сечение признано универсальным законом живых систем. Можно отметить два вида проявлений золотого сечения в живой природе: иррациональные отношения по Пифагору - 1.62 и целочисленные, дискретные - по Фибоначчи.
Было установлено, что числовой ряд чисел Фибоначчи характеризует структурную организацию многих живых систем. Например, винтовое листорасположение на ветке составляет дробь (число оборотов на стебле/число листьев в цикле, напр. 2/5; 3/8; 5/13), соответствующую рядам Фибоначчи. Хорошо известна "золотая" пропорция пятилепестковых цветков яблони, груши и многих других растений. Носители генетического кода - молекулы ДНК и РНК - имеют структуру двойной спирали; ее размеры почти полностью соответствуют числам ряда Фибоначчи.
Еще Гете подчеркивал тенденцию природы к спиральности. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гете называл спираль "кривой жизни". Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Цветки и семена подсолнуха, ромашки, чешуйки в плодах ананаса, хвойных шишках "упакованы" по логарифмическим ("золотым") спиралям, завивающимся навстречу друг другу, причем числа "правых "и "левых" спиралей всегда относятся друг к другу, как соседние числа Фибоначчи.
Приглядимся внимательно к побегу цикория. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс.
Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.
У многих бабочек соотношение размеров грудной и брюшной части тела отвечает золотой пропорции. Сложив крылья, ночная бабочка образует правильный равносторонний треугольник. Но стоит развести крылья, и вы увидите тот же принцип членения тела на 2,3,5,8. Стрекоза также создана по законам золотой пропорции: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста.
В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 62 к 38.
И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы – симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста.
Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого
Великий Гете, поэт, естествоиспытатель и художник (он рисовал и писал акварелью), мечтал о создании единого учения о форме, образовании и преобразовании органических тел. Это он ввел в научный обиход термин морфология.
Пьер Кюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.
Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.
Можно заметить золотые пропорции, если внимательно посмотреть на яйцо птицы.
Золотое сечение в анатомии.
Закон золотого сечения просматривается в количественном членении человеческого тела, соответствующем числам ряда Фибоначчи. Примером может быть число костей туловища, черепа и конечностей. Так, в скелете туловища различают 3 костных системы: позвоночник, реберный его отдел и грудину. Грудина включает 3 кости (рукоятку, тело и мечевидный отросток). Позвоночник состоит из 33 (34) позвонков; от них отходят 12-13 пар ребер.
Мозговой череп состоит из 8 костей. В верхней и нижней челюстях с каждой стороны имеется по 8 альвеол и соответственно - корни 8 зубов.
Скелет верхней конечности состоит из 3 частей (плечевой, костей предплечья и костей кисти). Кисть включает 8 костей запястья, 5 пястных костей и кости 5 пальцев. Каждый палец, кроме большого, имеет по 3 фаланги. Таким образом, морфогенез кисти, включающей два соседних члена числового ряда Фибоначчи - в частности, 8 костей запястья и 5 костей пясти - приближается к золотому сечению 1.618, поскольку 8/5=1.6.
Сопоставляя длины фаланг пальцев и кисти руки в целом, а также расстояния между отдельными частями лица, также можно найти "золотые" соотношения:
Скульпторы утверждают, что талия делит совершенное человеческое тело в отношении золотого сечения. Измерения нескольких тысяч человеческих тел позволили обнаружить, что для взрослых мужчин это отношение равно в среднем примерно 13/8 = 1,625, а для взрослых женщин оно составляет 8/5 = 1,6. Так что пропорции мужчин ближе к "золотому сечению", чем пропорции женщин (однако женщина в обуви на каблуках может оказаться ближе к "золотым" пропорциям). У новорожденного пропорция составляет отношение 1 : 1, к 13 годам она равна 1,6, а к 21 году у мужчин равняется 1,625. Пропорции золотого сечения проявляются и в отношении других частей тела - длина плеча, предплечья и кисти, кисти и пальцев и т.д.
Золотые пропорции в литературе. Поэзия и золотое сечение.
Многое в структуре поэтических произведений роднит этот вид искусства с музыкой. Четкий ритм, закономерное чередование ударных и безударных слогов, упорядоченная размерность стихотворений, их эмоциональная насыщенность делают поэзию родной сестрой музыкальных произведений. Каждый стих обладает своей музыкальной формой - своей ритмикой и мелодией. Можно ожидать, что в строении стихотворений проявятся некоторые черты музыкальных произведений, закономерности музыкальной гармонии, а следовательно, и золотая пропорция.
Начнем с величины стихотворения, то есть количества строк в нем. Казалось бы, этот параметр стихотворения может изменяться произвольно. Однако оказалось, что это не так. Например, проведенный Н. Васютинским анализ стихотворений А.С. Пушкина с этой точки зрения показал, что размеры стихов
распределены весьма неравномерно; оказалось, что Пушкин явно предпочитает размеры в 5, 8, 13, 21 и 34 строк (числа Фибоначчи).
Многими исследователями было замечено, что стихотворения подобны музыкальным произведениям; в них также существуют кульминационные пункты, которые делят стихотворение в пропорции золотого сечения. Рассмотрим, например, стихотворение А.С. Пушкина "Сапожник":
Картину раз высматривал сапожник
И в обуви ошибку указал;
Взяв тотчас кисть, исправился художник,
Вот, подбочась, сапожник продолжал:
"Мне кажется, лицо немного криво ...
А эта грудь не слишком ли нага?
Тут Апеллес прервал нетерпеливо:
"Суди, дружок, не выше сапога!"
Есть у меня приятель на примете:
Не ведаю, в каком бы он предмете
Был знатоком, хоть строг он на словах,
Но черт его несет судить о свете:
Попробуй он судить о сапогах!
Проведем анализ этой притчи. Стихотворение состоит из 13 строк. В нем выделяется две смысловые части: первая в 8 строк и вторая (мораль притчи) в 5 строк (13, 8, 5 - числа Фибоначчи).
Одно из последних стихотворений Пушкина "Не дорого ценю я громкие права..." состоит из 21 строки и в нем выделяется две смысловые части: в 13 и 8 строк.
Не дорого ценю я громкие права,
От коих не одна кружится голова.
Я не ропщу о том, что отказали боги
Мне в сладкой участи оспаривать налоги
Или мешать царям друг с другом воевать;
И мало горя мне, свободно ли печать
Морочит олухов, иль чуткая цензура
В журнальных замыслах стесняет балагура.
Все это, видите ль, слова, слова, слова.
Иные, лучшие, мне дороги права:
Иная, лучшая, потребна мне свобода:
Зависеть от царя, зависеть от народа -
Не все ли нам равно? Бог с ними.
Никому
Отчета не давать, себе лишь самому
Служить и угождать; для власти, для ливреи
Не гнуть ни совести, ни помыслов, ни шеи;
По прихоти своей скитаться здесь и там,
Дивясь божественным природы красотам,
И пред созданьями искусств и вдохновенья
Трепеща радостно в восторгах умиленья,
Вот счастье! Вот права ...
Характерно, что и первая часть этого стиха (13 строк) по смысловому содержанию делится на 8 и 5 строк, то есть все стихотворение построено по законам золотой пропорции.
Представляет несомненный интерес анализ романа "Евгений Онегин", сделанный Н. Васютинским. Этот роман состоит из 8 глав, в каждой из них в среднем около 50 стихов. Наиболее совершенной, наиболее отточенной и эмоционально насыщенной является восьмая глава. В ней 51 стих. Вместе с письмом Евгения к Татьяне (60 строк) это точно соответствует числу Фибоначчи 55!
Н. Васютинский констатирует:
"Кульминацией главы является объяснение Евгения в любви к Татьяне - строка "Бледнеть и гаснуть ... вот блаженство!". Эта строка делит всю восьмую главу на две части - в первой 477 строк, а во второй - 295 строк. Их отношение равно 1,617! Тончайшее соответствие величине золотой пропорции! Это великое чудо гармонии, совершенное гением Пушкина!".
Знаменитое стихотворение Лермонтова "Бородино" делится на две части: вступление, обращенное к рассказчику и занимающее лишь одну строфу ("Скажите, дядя, ведь недаром..."), и главную часть, представляющее самостоятельное целое, которое распадается на две равносильные части. В первой из них описывается с нарастающим напряжением ожидание боя, во второй - сам с постепенным снижением напряжения к концу стихотворения. Граница между этими частями является кульминационной точкой произведения и приходится как раз на точку деления его золотым сечением.
Главная часть стихотворения состоит из 13 семистиший, то есть из 91 строки. Разделив ее золотым сечением (91:1,618 = 56,238), убеждаемся, что точка деления находится в начале 57-го стиха, где стоит короткая фраза: "Ну ж был денек!". Именно эта фраза представляет собой "кульминационный пункт возбужденного ожидания", завершающей первую часть стихотворения (ожидание боя) и открывающий вторую его часть (описание боя).
Таким образом, золотое сечение играет в поэзии весьма осмысленную роль, выделяя кульминационный пункт стихотворения.
Золотое сечение в музыке
Еще в 1925 году искусствовед Л.Л.Сабанеев, проанализировав 1770 музыкальных произведений 42 авторов, показал, что подавляющее большинство выдающихся сочинений можно легко разделить на части или по теме, или по интонационному строю, или по ладовому строю, которые находятся между собой в отношении золотого сечения. Причем, чем талантливее композитор, тем в большем количестве его произведений найдено золотых сечений. У Аренского, Бетховена, Бородина, Гайдна, Моцарта, Скрябина, Шопена и Шуберта золотые сечения найдены в 90% всех произведений. По мнению Сабанеева, золотое сечение приводит к впечатлению особой стройности музыкального сочинения. Этот результат Сабанеев проверил на всех 27 этюдах Шопена. Он обнаружил в них 178 золотых сечений. При этом оказалось, что не только большие части этюдов делятся по длительности в отношении золотого сечения, но и части этюдов внутри зачастую делятся в таком же отношении.
Композитор и ученый М.А.Марутаев подсчитал количество тактов в знаменитой сонате "Аппассионата" и нашел ряд интересных числовых соотношений. В частности, в разработке – центральной структурной единице сонаты, где интенсивно развиваются темы и сменяют друг друга тональности, - два основных раздела. В первом 43,25 такта, во втором – 26,75. Отношение 43,25:26,75=0,618:0,382=1,618 дает золотое сечение.
Золотое сечение и восприятие изображений
О способности зрительного анализатора человека выделять объекты, построенные по алгоритму золотого сечения, как красивые, привлекательные и гармоничные, известно давно. Золотое сечение дает ощущение наиболее совершенного единого целого. Формат многих книг соответствует золотому сечению. Оно выбирается для окон, живописных полотен и конвертов, марок, визиток. Человек может ничего не знать о числе Ф, но в строении предметов, а также в последовательности событий он подсознательно находит элементы золотой пропорции.
Проводились исследования, в которых испытуемым предлагалось выбирать и копировать прямоугольники различных пропорций. На выбор предлагалось три прямоугольника: квадрат (40:40 мм), прямоугольник "золотого сечения" с отношением сторон 1:1,62 (31:50 мм) и прямоугольник с удлиненными пропорциями 1:2,31 (26:60 мм).
При выборе прямоугольников в обычном состоянии в 1/2 случаев предпочтение отдается квадрату. Правое полушарие предпочитает золотое сечение и отвергает вытянутый прямоугольник. Наоборот, левое полушарие тяготеет к удлиненным пропорциям и отвергает золотое сечение.
При копировании этих прямоугольников наблюдалось следующее. Когда активно правое полушарие, пропорции в копиях выдерживались наиболее точно. При активности левого полушария пропорции всех прямоугольников искажались, прямоугольники вытягивались (квадрат срисовывался как прямоугольник с отношением сторон 1:1,2; пропорции вытянутого прямоугольника резко увеличивались и достигали 1:2,8). Наиболее сильно искажались пропорции "золотого" прямоугольника; его пропорции в копиях становились пропорциями прямоугольника 1:2,08.
При рисовании собственных рисунков преобладают пропорции, близкие к золотому сечению, и вытянутые. В среднем пропорции составляют 1:2, при этом правое полушарие отдает предпочтение пропорциям золотого сечения, левое полушарие отходит от пропорций золотого сечения и вытягивает рисунок.
А теперь нарисуйте несколько прямоугольников, измерьте их стороны и найдите соотношение сторон. Какое полушарие у Вас преобладает?
«Необходимо прекрасному зданию быть построенным подобно хорошо сложенному человеку»
(Павел Флоренский)
Можно ли “поверить алгеброй гармонию”? “Да”, – считал Леонардо и указал, как это сделать. “Золотое сечение” – не середина, а пропорция – несложное математическое соотношение, содержащее в себе “закон звезды и формулу цветка”, рисунок на хитиновом покрове животных, длину ветвей дерева, пропорции человеческого тела. Видишь гармоничную композицию, пропорциональное телосложение или здание, радующее глаз, – измерь и придешь к одной и той же формуле. Во времена Возрождения для проверки “закона гармонии” измеряли античные статуи, полтора века назад пропорции “золотого сечения” проверяли, соотнося длину ноги и туловища гвардейских солдат, – все совершенно точно.
Художник Александр Панкин исследует законы красоты… на знаменитых квадратах Казимира Малевича.
– В начале 80-х на лекции о Малевиче просят показать слайд “Черного квадрата”. После того как изображение появляется на экране, лектор строго произносит: “Переверните, пожалуйста”. Мы смеялись: трудно понять простому человеку, зачем такое рисовать. Это красиво?
– Исследуя картины Малевича с циркулем и с линейкой, я пришел к выводу, что они удивительно гармоничны. Здесь нет ни одного случайного элемента. Взяв единственный отрезок, – скажем, размер холста или сторону квадрата, – можно по одной формуле выстроить всю картину. Есть квадраты, все элементы которых соотносятся в пропорции “золотого сечения”, а знаменитый “Черный квадрат” нарисован в пропорции квадратного корня из двух.
– А вы рисуете эти пропорции на полях для полного сходства со школьной задачей по геометрии?
– То, чем я занимаюсь, можно назвать “объективным искусством”. На первый взгляд какое же это творчество, если не ставится задача выразить свою индивидуальность? Существует даже такое выражение – “художник узнаваем”. Но я обнаружил удивительную закономерность: чем меньше стремления самовыразиться, тем больше творчества. Там, где рамки слишком широки, где все можно, мы постепенно приходим к тому, что люди начинают портить полотна (скажем, Бренер подошел к картине Малевича с баллончиком краски), некоторые иконы режут и говорят: “А я так вижу”. Важен канон. Не случайно в иконописи он так строго соблюдается. Для творчества лучше не настежь открытые двери, а чтобы надо было пролезать в щель. Меня интересует форма, как она образуется и развивается сама по себе.
– Это же компьютерный алгоритм, при чем тут живопись?
– В 1918 году Малевич сказал, что живопись кончилась, – осталась только геометрия. В том году он нарисовал белый квадрат на белом фоне. Но потом случилось “возвращение Малевича на Землю”, его живопись опредметилась. Наука не поглотила искусство, но в те исторические периоды, когда геометрия и искусство сближались, это давало импульс к развитию того и другого. Так было во времена Возрождения, когда Леонардо исследовал пропорции “золотого сечения”, и в начале ХХ века, когда Поль Сезанн сказал: “Трактуйте природу посредством цилиндра, шара, конуса”. Если импрессионисты рисовали нечто личное, изменчивое, то кубистов, наоборот, интересовал формообразующий элемент – каркас. Сейчас проходят конференции “Математика и искусство” и семинары, где встречаются ученые и художники, случаются настоящие открытия. Со времен Леонардо известен так называемый числовой ряд Фибоначчи: 0,1,1,2,3,5,8,13,21,34... Это “золотая” последовательность чисел, по этому закону располагаются листья цветка и семечки в подсолнухе. Я изобразил этот ряд на плоскости в виде треугольников. Получилась удивительная вещь. Члены ряда Фибоначчи очень быстро растут: треугольник превращался в стрелу, две стороны уходят в бесконечность, а один из катетов все время остается равным пяти! До этого я не понимал, что такое “конечная бесконечность”! Посмотрев на эту картину, профессор Александр Зенкин математически доказал: такая система треугольников – это ядро ряда Фибоначчи. Обнаружился новый математический объект!
– Треугольники Панкина?
– На одном семинаре были предложения так их и назвать, потому что эту математическую закономерность почему-то раньше никто не замечал.
– Может быть, вы исследуете гармонию Малевича не потому, что видите в его творчестве особый смысл, а потому, что другие картины сложнее под формулу подогнать?
– Почему же! Последнее время мне хочется так же исследовать “Незнакомку” Крамского. Я посмотрел: там тоже в основе лежит “золотое сечение”. Те же правила и закономерности, которые я нащупал в картинах Малевича, можно приложить и к другим картинам, очень интересные вещи получатся. Картины Малевича – это краеугольный камень формообразования, мимо него нельзя пройти. “Черный квадрат” – точка отсчета, космическая воронка, куда искусство попадает и выходит измененным. Появляются новые пространства. У передвижников или у натуралистов типа Шилова картина – это окно, за которым в обычной прямой перспективе располагаются трехмерные объекты. У Сезанна пространства лежат на холсте. В иконах одновременно присутствуют две точки зрения: смотришь со своего места и одновременно будто находишься внутри происходящего. Пространство опредмечивается, не зря иконам не нужны рамки. Мне кажется, в будущем пространство картины будет лежать не за холстом, а перед ним…
– Недавно в магазине я увидела плакат с “Черным квадратом”. Обрадовалась и купила, хотела повесить дома, а потом передумала. Неуютно спать, когда над кроватью “Черный квадрат” висит. А вы хотели бы у себя над кроватью повесить квадрат Малевича?
– Честно говоря, у меня над кроватью мои картины висят, они у меня всюду висят. А хотел бы… наверное, Иванова – “Явление Христа народу”. Удивительная композиция – фигура Христа в центре и от нее будто лучи расходятся. Раньше я почему-то этого не замечал…
По теме: методические разработки, презентации и конспекты
Исследовательская работа "Золотое сечение"
Золотое сечение в математике, биологии, искусстве...
Урок по геометрии "Тетраэдр. Параллелепипед. Построение сечений"
Урок проводится в компьютерном классе. Задача подвести учащихся к теме урока, познакомить с понятиями тетраэдра и параллелепипеда, научить строить сечения, используя доску SMART Board и развивающую пр...
Презентация по теме "Построение сечений в многогранниках", геометрия 10 класс
Предлагается мультимедийная презентация ( особенно эффективна с использованием интерактивной доски), в которой:- рассмотрены теоретические сведения;- представлена пошаговая демонстрация построен...
"Золотое сечение и его использование в искусстве"
Презентация - поддержка интегрированного урока (математика + ИЗО) по теме " Золотое сечение и его использование в искусстве" с использованием интерактивной доски....
Зачет по теме: Построение сечений. 10 классКонтрольная работа по теме: Тетраэдр и параллелепипед. Построение сечений. 10 класс
Предлагаю для учащихся 10 класса зачет и контрольную работу к учебнику под ред Атанасяна...
Золотле сечение
История Золотого сечения...
"Построение сечений куба и пирамиды. Вычисление площадей полученных сечений»
Интегрированный урок математики и информатики в 10-м классе по теме: "Построение сечений куба и пирамиды. Вычисление площадей полученных сечений»Тип урока: Урок совершенствования знаний, умений и навы...