Презентация. Множества.
презентация к уроку по алгебре (9 класс) на тему
Презентация. Множества и операции над ними.
Скачать:
Вложение | Размер |
---|---|
![]() | 1.21 МБ |
Предварительный просмотр:
Подписи к слайдам:
Понятие множества. Георг Кантор (1845-1918) Профессор математики и философии, основоположник современной теории множеств. «Под множеством мы подразумеваем объединение в целое определённых, различающихся между собой объектов нашего представления или мышления». Георг Кантор
Понятие множества. Основное понятие в математике - понятие множества. Понятие множество относится к первоначальным понятиям, не подлежащим определению. Под множеством подразумевается некоторая совокупность однородных объектов. Предметы ( объекты), составляющие множество, называются элементами .
Обозначение множества Множества обозначаются заглавными буквами латинского алфавита: A, B, C, X и др. Элементы множества обозначаются строчными буквами латинского алфавита : a, b, c, d и др. Запись M = { a , b, c, d } означает, что множество М состоит из элементов a , b, c, d . Є – знак принадлежности. Запись а є М обозначает, что объект а является элементом множества М и читается так: « а принадлежит множеству М »
Численность множества Численность множества- число элементов в данном множестве. Обозначается так : n Записывается так : n (М) = 4 Множества бывают: Конечные множества - состоят из конечного числа элементов, когда можно пересчитать все элементы множества. Бесконечные множества - когда невозможно пересчитать все элементы множества. Пустые множества - множества, не содержащие элементов и обозначают так: Ø . Записывают так: n (A)=0 ; A= Ø Пустое множество является подмножеством любого множества.
Виды множеств: Дискретные множества (прерывные)- имеют отдельные элементы. Путём счёта распознаются. Непрерывные множества - нет отдельных элементов. Распознаются путём измерения. Конечные множества - состоят из конечного числа элементов, когда можно пересчитать все элементы множества. Бесконечные множества - когда невозможно пересчитать все элементы множества. Упорядочные множества. Элемент из множества предшествует или следует за другим. Множество натуральных чисел, расположенных в виде натурального ряда. Неупорядочные множества. Любое неупорядочное множество можно упорядочить.
Подмножество Если любой элемент множества В принадлежит множеству А, то множество В называется подмножеством множества А. - Знак включения. Запись В А означает, что множество В является подмножеством множества А.
Виды подмножеств Собственное подмножество. Множество В называется собственным подмножеством множества А, если выполняются условия: В≠ Ø , В≠А. Не собственные подмножества. Множество В называется не собственным подмножеством множества А, если выполняются условия: В≠ Ø , В=А. Пустое множество является подмножеством любого множества. Любое множество является подмножеством самого себя.
А В А=В Равенства множеств Множества равны, если они состоят из одних и тех же элементов. Два множества являются равными , если каждый из них является подмножеством другого. В этом случае пишут: А=В
Операции над множествами Пересечение множеств. Объединение множеств. Разность множеств. Дополнение множества.
Объединение множеств Объединением множеств А и В называется множество всех объектов, являющихся элементами множества А или множества В. U - знак объединения. А U В читается так: «Объединение множества А и множества В».
Пересечение множеств Пересечением множеств А и В называется множество, содержащее только те элементы, которые одновременно принадлежат и множеству А и множеству В. ∩-знак пересечения, соответствует союзу «и». А ∩ В читается так: «Пересечение множеств А и В»
Разность множеств Разностью множеств А и В называется множество всех объектов, являющихся элементами множества А и не принадлежащих множеству В. \ - знак разности, соответствует предлогу «без». Разность множеств А и В записывается так: А \ В
Дополнение множества Множество элементов множества В, не принадлежащих множеству А, называется дополнением множества А до множества В. Часто множества являются подмножествами некоторого основного, или универсального множества U . Дополнение обозначается Ā
Свойства множеств Пересечение и объединение множеств обладают свойствами: Коммутативность Ассоциативность Дистрибутивность
Ассоциативность ( А ∩ В ) ∩ С = А ∩ ( В ∩ С ) ( А U В ) U С = А U ( В U С )
Коммутативность А ∩ В = В ∩ А А U В = В U А
Дистрибутивность ( А U В ) ∩ С = (А ∩ С ) U ( В ∩ С ) ( А ∩ В ) U С = (А U С ) ∩ ( В U С )
Отношения множеств В теории множеств рассматриваются отношения между множествами: Тождественность. Если каждый элемент множества А является также и элементом множества В , и каждый элемент множества В есть также элементом множества А, то эти множества тождественны. Обозначается так : А=В. Эквивалентность. Соответствие между элементами множеств А и В, при котором каждому элементу множества А соответствует единственный элемент множества В, и наоборот, различным элементам одного множества соответствуют различные элементы другого множества, называется взаимно однозначными. Если существует, по крайней мере, одно взаимно однозначное соответствие между элементами множеств А и В, то такие множества называются эквивалентными.
Свойства эквивалентности Отношение эквивалентности обладает следующими свойствами: Симметричность (взаимность). Если множество А эквивалентно множеству В , то множество В эквивалентно множеству А. А ~В, В~А Транзитивность ( переходность) . Если множество А эквивалентно множеству В , а множество В эквивалентно множеству С, то множества А и С эквивалентны. А ~В, В~С, А~ С. Рефлексивность ( возвратность). Всякое множество эквивалентно самому себе. А ~А Использование отношения эквивалентности позволяет разбить всевозможные множества на классы эквивалентных между собой множеств.
По теме: методические разработки, презентации и конспекты
Множество. Элементы множества. 2 класс.
Конспект урока для 2 класса. Горячев А.В....

Множество. Элементы множества. Число элементов множества.
Задания для интерактивной доски SmartBoard, которые познакомят учащихся с понятиями "множество", "элемент множества"; научат определять число элементов множества и принадлежность элементов заданному м...

Презентация по математике "Множества". Дано понятия множества. Приведены примеры конечных, бесконечных и равных множеств.
В презентации дано понятие множества. Приведены примеры конечных, бесконечных и равных множеств. Рассмотрены решения задач на объединение и пересечение множеств....

Презентация: Множества. Операции над множествами.
Презентация. Множества. Операции над множествами....
Пересечение и объединение множеств. Разность множеств, дополнение множества.
Для самостоятельного изучения...