Сложение и вычитание дробей с разными знаменетелями
план-конспект урока по алгебре (5 класс) по теме

Урок введения "новых знаний" составлен в соответсвии с ФГОС по математике

Скачать:


Предварительный просмотр:

Урок математики в 5 классе в технологии деятельностного метода "Сложение и вычитание дробей с разными знаменателями "(урок открытия новых знаний), УМК «Сферы» изд-во «Просвещение» (учебник, задачник).

Долинская Кристина Сергеевна, учитель математики МБОУ СОШ №7 ЗАТО Углегорск

Цель урока: построить алгоритм сложения и вычитания дробей с разными знаменателями, тренировать способность к его практическому использованию.

Этапы урока

Цель этапа

Формирование учебно-универсальных действий

Организация этапа

I. Мотивация к учебной деятельности

Включить учащихся в учебную деятельность; определить содержательные рамки урока (продолжение работы с обыкновенными дробями)

Личностные: самоопределение, смыслообразование

Познавательные: целеполагание

Коммуникативные: планирование учебного сотрудничества

- Перед началом урока хочу предложить вам старинную суфийскую притчу «Делёж верблюдов»

Живший некогда Суфий хотел сделать так, чтобы ученики после его смерти нашли подходящего им учителя Пути. Поэтому в завещании, после обязательного по закону раздела имущества, он оставил своим ученикам семнадцать верблюдов с таким указанием: «Разделите верблюдов между самым старшим, средним по возрасту и самым младшим из вас следующим образом: старшему пусть будет половина, среднему — треть, а младшему — одна девятая».

Когда Суфий умер, и завещание было прочитано, ученики вначале были изумлены таким неумелым распределением имущества Мастера. Одни предлагали: «Давайте владеть верблюдами сообща»; другие искали совета и затем говорили: «Нам советовали разделить способом, наиболее близким к указанному»; третьим судья посоветовал продать верблюдов и поделить деньги; а ещё некоторые считали, что завещание утратило свою законную силу, поскольку его условия не могут быть выполнены.

Спустя некоторое время ученики пришли к мысли, что в завещании Мастера мог быть какой-то скрытый смысл, и они стали расспрашивать повсюду о человеке, который может решать неразрешимые задачи. К кому бы они ни обращались, никто не мог помочь им, пока они не постучали в дверь Хазрата Али, зятя Пророка. Он сказал:

— Вот вам решение. Я добавлю одного верблюда к этим семнадцати. Из восемнадцати верблюдов вы возьмете половину — девять верблюдов — для старшего ученика. Второй ученик возьмет треть — то есть шесть верблюдов. Третий получит одну девятую — двух верблюдов. Это как раз семнадцать. Остался один — мой верблюд, он вернётся ко мне.

Вот так ученики нашли себе учителя.

- Какой серьёзной темой мы начали заниматься в этой четверти? (обыкновенными дробями)

- Чему мы уже научились? (сокращать дроби, отмечать их на координатном луче, приводить к НОЗ, сравнивать дроби с разными знаменателями)

- Как вы думаете, куда дальше в изучении дробей мы продолжим продвигаться? (мы должны научиться производить с ними арифметические действия).

II. Актуализация знаний и фиксация затруднений

1) актуализировать учебное содержание, необходимое и достаточное для восприятия нового материала: основное свойство дроби, приведение дробей к одинаковому знаменателю, сложение и вычитание дробей с одинаковыми знаменателями;

2) актуализировать мыслительные операции, необходимые и достаточные для восприятия нового материала: сравнение, анализ, обобщение;

3) зафиксировать все повторяемые понятия и алгоритмы в виде схем и символов: в виде свойств и определения;

4) зафиксировать индивидуальное затруднение в деятельности, демонстрирующее на личностно значимом уровне недостаточность имеющихся знаний: сложить и вычесть дроби с разными знаменателями.

Познавательные: анализ, сравнение, аналогия, использование знаковой системы, осознанное построение речевого высказывания, подведение под понятие

Регулятивные: выполнение пробного учебного действия, фиксация индивидуального затруднения, волевая саморегуляция в ситуации затруднения

Коммуникативные: выражение своих мыслей, аргументация своего мнения, учёт разных мнений учащихся

- А начнём мы как всегда с устной работы, потому что чтобы узнать что-то новое …(необходимо повторить уже изученный материал)

Сократите дроби: 8⁄12, 15⁄25, 12⁄36, 38⁄4

Выделите целую часть из дробей: 12⁄5, 23⁄4, 21⁄2, 201⁄2

Дан ряд дробей: 1⁄8, 1⁄3, 13⁄24, 3⁄4

Что мы можем о нём сказать?

К какому НОЗ можно привести все дроби? Почему? (к 24, т.к. 24 – НОК всех знаменателей)

Приведите все дроби к знаменателю 24. Прочитайте получившейся ряд чисел.

Установите закономерность и продолжите ряд на 2 числа.

На какие группы можно разбить множество чисел этого ряда? (правильные и неправильные, сократимые и несократимые, однозначные и двузначные числители, в разряде единиц числителя 3 и 8 и т.д.)

Найдите сумму и разность дробей. Если потребуется, сократите дроби и выделите целую часть: (письменно)

23⁄24 + 13⁄24; 23⁄24 - 13⁄24

А каким правилом сложения и вычитания дробей вы воспользовались? Запишите его в общем виде.

- Т.е. алгоритмом сложения и вычитания. Давайте восстановим алгоритм сложения и вычитания дробей с одинаковыми знаменателями: (выкладываем на доске)

Нам с вами вразброс даны части алгоритма по сложению и вычитанию дробей с равными знаменателями. Работая в парах, обсудите 30 секунд, восстановим алгоритм по шагам.

1.Суммой (или разностью) дробей является дробь

2.Сложить (или вычесть) числители и записать ответ в числитель суммы (или разности)

3.Знаменатель оставить без изменения, записав его в знаменатель суммы (или разности)

4.Если возможно, сократить полученную дробь и выделить и нее целую часть

- Хорошо. Следующее задание: выполните действия: 2⁄3 + 5⁄8 ; 5⁄6 + 2⁄9.

Предлагаю поработать в группах. Ваши результаты не забудьте прикрепить на доску. Время выполнения: 5 минут.

(После завершения работы защита своих работ)

III. Выявление места и причины затруднения

1) организовать коммуникативное взаимодействие, в ходе которого выявляется и фиксируется отличительное свойство задания, вызвавшего затруднение в учебной деятельности;

2) согласовать цель и тему урока.

Познавательные: анализ, сравнение, обобщение, подведение под понятие, постановка и формулирование проблемы, построение речевого высказывания

Регулятивные: волевая саморегуляция в ситуации затруднения

Коммуникативные: выражение своих мыслей, аргументация своего мнения, учёт разных мнений, разрешение конфликтной ситуации

– Почему у вас получились такие разные ответы, как выяснить, кто выполнил задание правильно, а кто-то совсем не дали ответы, Чем отличается предыдущее задание, с которым вы все хорошо справились от этого? (В предыдущем задании дроби были с одинаковыми знаменателями, и у нас был алгоритм сложения и вычитания таких дробей, а в последнем задании у дробей разные знаменатели.)

– Что же нам надо сделать, чтобы выполнить задание, определить, кто его выполнил правильно? (Надо найти способ нахождения суммы и разности дробей с разными знаменателями, построить для таких дробей алгоритм сложения и вычитания.)

– Сформулируйте цели урока. (Построить алгоритм сложения и вычитания дробей с разными знаменателями, научиться выполнять действия по построенному алгоритму.)

– Хорошо! Чтобы продолжить работу, надо записать тему урока, что мы запишем в тетрадь? (Сложение и вычитание дробей с разными знаменателями.)

– Запишите тему. (На доске открывается тема урока.)

IV. Построение проекта выхода из затруднения

1) организовать коммуникативное взаимодействие для построения нового способа действия, устраняющего причину выявленного затруднения;

2) зафиксировать новый способ действия в знаковой, вербальной форме и с помощью эталона.

Личностные: самоопределение, смыслообразование

Познавательные: анализ, синтез, обобщение, аналогия, самостоятельное выделение и формулирование познавательной цели, поиск и выделение необходимой информации, проблема выбора эффективного способа решения, планирование, выдвижение гипотез и их обоснование, создание способа решения проблемы

Регулятивные: волевая саморегуляция в ситуации затруднения

Коммуникативные: выражение своих мыслей, аргументирование своего мнения, учёт разных мнений, планирование учебного сотрудничества со сверстниками, достижение общего решения.

Задания парам следующее: дополнить известный алгоритм шагом или шагами, чтобы можно было по нему выполнить сложение и вычитание дробей с разными знаменателям и показать на предложенных примерах, как он действует. У каждой группы на столе таблички из старого алгоритм и несколько чистых листочков. На работу отводится 7 минут.

Все варианты вывешиваются на доску и проводится обсуждение.

- Результатом обсуждения является алгоритм сложения и вычитания дробей:

1.Суммой (или разностью) дробей является дробь

2.Привести дроби к НОЗ, найти дополнительные множители

3.Сложить (или вычесть) числители и записать ответ в числитель суммы (или разности)

4.Знаменатель оставить без изменения, записав его в знаменатель суммы (или разности)

5.Если возможно, сократить полученную дробь и выделить и нее целую часть

- Вернёмся к нашим выражениям и найдём их значения, используя полученный алгоритм: (будьте внимательны при оформлении задания)

а) 2⁄3 + 5⁄8=(16+15)⁄24=31⁄24=17⁄24

1. приведём дроби к наименьшему общему знаменателю, НОК (3,8)=24

2. дополнительный множитель для первой дроби равен 8, для второй дроби – 3.

3. складываем числители, знаменатель оставляем без изменения. Дробь неправильная, выдели из неё целую часть.

б) 5⁄6 + 2⁄9=11⁄18 (самостоятельно)

В математике нельзя пропускать ни одного слова в некоторых правилах. Общий знаменатель и наименьший общий знаменатель не всегда совпадают.

Послушайте притчу об одном мэре.

Когда ещё не было электричества, мэр одного города любил вечером гулять по городским улицам. Как-то он столкнулся с одним горожанином, у него на лбу выскочила шишка. На следующий день он издал указ: “В тёмное время суток на улицу выходить с фонарём”. А вечером на него налетел тот же горожанин. Мэр потребовал у него фонарь.

- Вот, - сказал прохожий.

- А где свеча? – спросил мэр.

- А в указе не написано, что в фонаре должна быть свеча, - ответил тот.

Мэр издал второй указ: “В тёмное время суток на улицу выходить с фонарём со свечой”.

В третий день история повторилась.

Мэр уже вышел из себя.

- Думаете, что ответил мэру прохожий?

В приказе не написано, что свеча фонаря должна быть зажжена.

Мэру пришлось издать указ третий раз, только после этого прохожий оставил его в покое.

Поэтому наша задача – хорошо знать алгоритм и уметь его применять.

V. Первичное закрепление во внешней речи

Зафиксировать изученное учебное содержание во внешней речи

Личностные: осознание ответственности за общее дело

Познавательные: выполнение действий по алгоритму, построение логической цепи рассуждений, анализ, обобщение, подведение под понятие

Коммуникативные: выражение своих мыслей, использование речевых средств для решения коммуникационных задач, достижение договорённости и согласование общего решения

- Ученики решают у доски, используя алгоритм (обратить внимание на проговаривание)

№ 546 (а, в) первая строка

а) 1⁄2 + 1⁄4

Приведём дроби к НОЗ, для этого найдём НОК (2; 4)=4

Дополнительный множитель первой дроби 2, второй дроби 1

1⁄2 + 1⁄4 = 2⁄4 + 1⁄4

Применим алгоритм сложения дробей с одинаковыми знаменателями, складываем числители, знаменатели оставляем без изменения

2⁄4 + 1⁄4 = 3⁄4

в) Проводим аналогичные рассуждения

1⁄2 - 1⁄8 = 4⁄8 - 1⁄8 = 3/8

№ 546 (б, г) – работа в парах, после выполнения проводится самопроверка по образцу (записано на обороте доски)

б) 5⁄8 + 5⁄24 = 15⁄24 + 5⁄24 = 20⁄24

г) 3⁄4 - 1⁄12 = 9⁄12 - 1⁄12 = 8/12=2/3

- Кто справился с первым заданием? Где допущена ошибка?

- Кто справился со вторым заданием? Где допущена ошибка?

 - Повторим ещё раз алгоритм сложения и вычитания дробей с разными знаменателями

VI. Самостоятельная работа с проверкой по эталону

Проверить своё умение применять алгоритм сложения и вычитания в типовых условиях на основе сопоставления своего решения с эталоном для самопроверки

Познавательные: анализ, синтез, аналогия, классификация, подведение под понятие, выполнение действий по алгоритму

Регулятивные: контроль, коррекция, самооценка

А сейчас каждый проверит сам себя – насколько он сам понял алгоритм сложения и вычитания и может его применить. Для самостоятельного решения:

Задачник: № 331 (а, б), №334 (а, б). Признак того, что вы работу закончили – поднятая рука. Получаете ключ для выполнения самопроверки.

После выполнения работы учащиеся проверяют свои ответы и отмечают правильно решённые примеры, исправляют допущенные ошибки, проводится выявление причин допущенных ошибок.

VII. Рефлексия деятельности на уроке

1) зафиксировать новое содержание, изученное на уроке: алгоритм сложения и вычитания дробей;

2) оценить собственную деятельность на уроке;

3) поблагодарить одноклассников, которые помогли получить результат урока;

4) зафиксировать неразрешённые затруднения как направления будущей учебной деятельности: действия со смешанными числами;

5) обсудить и записать домашнее задание.

Познавательные: рефлексия способов и условий действия, контроль и оценка процесса и результатов деятельности, адекватное понимание причин успеха или неуспеха

Коммуникативные: аргументация своего мнения, планирование учебного сотрудничества

– Что нового узнали на уроке?

– Какую цель мы ставили в начале урока?

– Наша цель достигнута?

– Что нам помогло справиться с затруднением?

– Какие знания нам пригодились при выполнении заданий на уроке?

– Как вы можете оценить свою работу?

Постановка домашнего задания с комментированием: алгоритм учить (раздать каждому), № 546 (вторая строка), № 548 (а) (по желанию)


По теме: методические разработки, презентации и конспекты

Сложение и вычитание дробей с разными знаменателями.

Цели урока: приобщение учащихся к разнообразным формам и методам изучения материала; воспитание любви к предмету; систематизация и обобщение знаний обучающихся по теме «Сложение и вычитан...

Урок-путешествие по теме "Сложение и вычитание дробей с разными знаменателями"

Цели урока: систематизация знаний учащихся по данной теме;закрепление знаний правил сложения и вычитания обыкновенных дробей с разными знаменателями;развитие интереса учащихся к изучению математ...

Урок алгебры в 8 классе на тему:"Сложение и вычитание дробей с разными знаменателями"

Урок обобщения знаний по данной теме . Урок постройн по плану игры "Кто хочет стать миллионером"....

Урок алгебры в 8 классе по теме:"Сложение и вычитание дробей с разными знаменателями"

Урок обобщения знаний. Конспект урока построен в виде игры "Кто хочет стать миллионером". Три не сгораемые оценки......

Повторение темы: « Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Сравнение, сложение и вычитание дробей с разными знаменателями».

Повторение темы: « Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Сравнение, сложение и вычитание дробей с разными знаменателями»....