Системно - деятельностный подход на уроках математики
учебно-методический материал по алгебре на тему

Обобщение опыта работы по данной технологии

Скачать:


Предварительный просмотр:

МОБУ « Дружбинская средняя общеобразовательная школа»

с.Дружба, Соль-Илецкий район, Оренбургская область 

ДОКЛАД

«Системно - деятельностный подход на уроках  математики»

(обобщение опыта).

Подготовила: учитель высшей категории

по  математике

 Герат Л.В.

МОБУ « Дружбинская CОШ»

2013г.

Главным  в моей работе является «повышение качества обучения  с помощью деятельностного подхода».

              Процесс творчества включает в себя, прежде всего открытие нового: новых объектов, новых знаний, новых проблем, новых методов их решения. Суть проблемного изложения знаний в том, что я стараюсь не собирать знания в готовом виде, а ставить перед учащимися проблемные задачи, побуждая искать пути и средства их решения. Проблема сама прокладывает путь к новым знаниям и способам действий. Решение проблемы требует включения творческого мышления. Что происходит с учащимися: сталкиваясь с противоречивой, новой, непонятной проблемой, у них возникало состояние недоумения, удивления, возникал вопрос: в чём суть? Далее мыслительный процесс протекает по схеме: выдвижение гипотез, их обоснование и проверка. Первое время, детям не всегда удавалось осуществить мыслительный поиск, открыть неизвестное, приходилось мне им помогать. Так, при изучении темы «Сравнение дробей» перед учащимися стоит проблема, которая прослеживается в формулировке самой темы. На данный момент школьники умеют выполнять сравнение дробей с одинаковым знаменателем и дроби с одинаковым числителем. Но как сравнить две дроби у которых знаменатели и числители различные? У учащихся пауза, а действительно как? Один из учеников выдвигает гипотезу, а если дроби изобразить на координатном луче? Практически начало решения проблемы положено. Далее рассматриваем другие способы сравнения, находим особые случаи и тем самым достигаем самого главного – учащиеся сами вывели правило сравнения дробей.

        Я с уверенностью могу сказать, что только самостоятельная творческая деятельность учащихся, предваряющая объяснение учителя, успешно готовит их к активному восприятию новых знаний, позволяет увидеть связь между пройденным материалом и вновь изученным. После проведения самостоятельной творческой работы знания проявляются как естественное продолжение уже имеющихся у учащихся знаний. Ученики становятся активными «творцами» нового, а не пассивными «запоминателями» их.

        Давно доказано психологами, что люди лучше усваивают то, что обсуждают с другими, а лучше всего помнят то, что объясняют другим. И ведь

именно эти возможности предоставляет учащимся используемая на уроке учителем групповая работа. 

Возьмем самый простой вид групповой работы – работу в парах. На этапе закрепления новой темы, например, «Умножение десятичных дробей на 10,100,1000 и т.д.» предлагаю учащимся записать в тетради любые три десятичные дроби и дать соседу по парте ту или иную задачу на умножение. Указываю на необходимость прослушать не только полученный ответ, но и объяснение, как этот ответ получен. Разрешаю учащимся в случае разногласий задать вопрос мне или учащимся с соседней парты. Выделяю на выполнение этого задания конкретное время, вполне достаточно 5 минут.

В течение этого времени каждый ученик класса получит возможность либо продемонстрировать свои знания, либо уточнить применение этого правила, в случае необходимости еще раз получить разъяснение. Каждый при этом еще и выступит в роли эксперта. Это небольшое упражнение очень действенно. А проводить его можно, как и сразу после объяснения учителя и рассмотрения нескольких примеров из учебника, так и на следующий день, после выполнения учащимися домашнего задания.

Очевидно, что такое упражнение можно проводить при изучении самых разных тем. Состав пар можно, конечно, менять, совсем не обязательно, чтобы это были ученики, сидящие за одной партой. Ученики могут даже перемещаться по классу, свободно выбирая себе партнеров, и работать с той скоростью, которая именно им необходима. Активность ученика на уроке заметно возрастает, когда он становится носителем функции учителя.

Естественно, ученик не подменяет учителя на уроке, организующее и мобилизующее начало на уроке остаётся за учителем. Но по заданию учителя, на определённом этапе обучения, учащиеся сами могут сделать многое: определить и выделить главное, предусмотреть варианты проверки их знаний и умений, предвидеть очередной вопрос, обосновать связь новой темы с предыдущей, предвидеть ход мыслей учителя в изложении новой информации по изображённым на доске схемам, моделям и другим опорным сигналам, т.е. как бы взять на себя роль учителя при объяснении нового материала.

Очень важно организовать работу так, чтобы каждый ученик в результате такой работы почувствовал собственный рост («додумался», «как же я раньше до этого не дошёл», «да это же совсем просто» и т.п.). Очень важным в такой деятельности, несомненно является психологический фактор: надо, чтобы дети видели в учителе надёжного помощника, доверяли ему, шли навстречу требованиям и установкам учителя и верили в свои силы, в возможность достижения лучших результатов.

Например, можно использовать карточки на этапе устной самостоятельной работы, которая выполняется в паре под условным названием «Ученик - учитель». Каждый играет то роль учителя, то роль ученика в определенный момент времени. На работу отводится до 10 минут урока. В это время осуществляется включённый контроль, т.е. учитель слушает ответы то одного, то другого ученика в различных парных группах и соответственно оценивает их, помогает ученику, выполняющему в данный момент функцию учителя, корректировать ошибки в момент их возникновения, оценивает не только отвечающего, но и качественную работу «учителя».

Положительным моментом такой работы является, несомненно, то, что половина учащихся класса одновременно учатся говорить, учатся видеть, слышать, исправлять ошибки других, тем самым обогащая, закрепляя и свои знания. Ведь каждому надо дать такую возможность высказать своё мнение и быть услышанным. После завершения этой работы ещё раз, но уже перед всем классом одна из групп даёт ответы по карточкам. Таким образом, за небольшой промежуток времени можно оценить работу 10-12 учащихся, что при традиционной фронтальной работе невозможно. Кроме того, объём задания для устного счёта при фронтальной работе, естественно, был бы меньшим.

Можно организовать работу в паре «Ученик-учитель», в которую включены сильный и слабый , или сильный и средний учащиеся. Целью такой работы является организация помощи сильными учащимися более слабым товарищам по классу. Причём такая работа является очень эффективной не только на начальном этапе изучения новой темы, но и в процессе повторения изученного. При этом работу следует организовать комбинированно: те, кто отлично усвоил материал, на определённую часть урока, выполняют роль учителя, помогая ликвидировать пробелы в знаниях тех, кто по какой-либо причине имеет их, остальные работают индивидуально и коллективно, после чего организуется проверка выполнения работы пары «Ученик-учитель».

Надо стараться привлекать для этой работы исключительно хорошо подготовленных учащихся, чтобы быть твёрдо уверенной в хорошем качестве такой помощи. Такая работа чрезвычайно полезна обоим ученикам: «учителю» важно уметь объяснять качественно, понятно, владеть алгоритмами решения тех или иных задач, основами теории, необходимой для достижения цели и, в конечном итоге, научить. Тот же, кого обучают в данный момент, получает уникальную возможность понять непонятное, подняться в своём уровне развития, а может быть, и узнать новое.

Работа в паре «Ученик-учитель» способствует развитию речи обоих учеников, закреплению знаний и умений, утверждению в знаниях обучающего, оказывает благоприятное воздействие на формирование коллективизма и товарищества. Убеждена, что при правильной организации и системности работы ученики приобретут не только опыт конструктивного общения, сформируют коммуникативные навыки, что само по себе очень важно, но и приобретут более качественные знания по предмету.

Математику нельзя изучать, наблюдая, как это делает сосед. В традиционной форме обучения большинство учащихся большую часть урока так и остаются наблюдателями. А вот работая в парах или группах, общаясь с соседом, проговаривая ему выученные формулировки, имея возможность научить кого-то тому, что знаешь сам, и получить, в случае необходимости, консультацию или разъяснение, ученики формируют и позитивное отношение к предмету, и навыки выполнения различных заданий. Качество знаний учащихся повышается, процесс обучения становится более успешным. А ведь вся наша школьная жизнь  состоит из маленьких шажков на пути к успеху.

      В своей практике применяю также фронтальную работу. Она способствует развитию мышления и речи учащихся. В ходе фронтальной работы учащиеся получают образцы рассуждений, образцы оформления записей. Они имеют возможность быстро и своевременно исправлять допущенные ошибки.

Коллективная работа в классе стимулирует поиск наиболее рационального пути решения задачи, поощряет инициативу и изобретательность. Исключительно, важное значение, имеет фронтальная работа для развития речи учащихся. Они слышат обоснование проводимых действий, поправки к этому обоснованию, вносимые учителем, получают образцы правильных и грамотных рассуждений. Решая конкретные задачи, они овладевают умением проводить полные и убедительные аргументы, формулировать утверждения, на которых основано то или иное действие. Контрольные вопросы и замечания, которые делает учитель по ходу фронтальной работы, позволяют учащимся ещё раз осмыслить то, что было услышано или при объяснении нового материала.

Учитывая всё это, я стараюсь построить свою работу так, чтобы она способствовала формированию общих учебных и специальных трудовых умений учащихся, необходимых для творческой деятельности и для самостоятельного расширения и углубления знаний.

Рассмотрим некоторые приёмы фронтальной работы, используемых мной на уроках.

Во-первых, при ответе ученика стараюсь не навязывать своего мнения, своего способа решения. При изучении темы «Сложение и вычитание дробей» предлагаю выполнить задание: найти значение выражения   при а = 1.2.3.4,5,6.  Ученик использует подстановку значений в исходное выражение. Да, задание выполнено, но рациональным ли способом? Как ещё можно выполнить задание? Один из учащихся предлагает сначала упростить выражение, а затем осуществить подстановку. Оказалось, что второй способ намного проще. Такой опыт полезен ученику: он убеждается в необходимости рассмотрения различных вариантов преобразований и т.п.

Во-вторых, требую от учащихся обоснования каждого шага решения. Добиваюсь того, чтобы учащиеся внимательно выслушивали аргументы, приводимые их товарищем, работающим у доски, и вносили в них поправки и добавления. Выработанная во время фронтальной работы на уроках потребность в обосновании хода решения поможет учащимся сознательно действовать и при самостоятельном выполнении заданий.

В-третьих, всегда поощряю наблюдательность и инициативу учащихся, тем самым, стимулирую их к поиску наиболее рациональных подходов и при самостоятельном решении задач.

В-четвёртых, стараюсь проводить с учащимися обсуждение полученного результата. Например, при решении текстовых задач иногда приходится получать несколько ответов. Приучая школьников осмысливать ответ задачи, выполнять там, где это возможно, проверку, делать прикидку результата, я формирую у них умения, необходимые для самоконтроля.

Построенная таким образом фронтальная работа способствует развитию у учащихся таких качеств мыслительной деятельности как гибкость ума, рациональности мышления, критичности мышления, а также способствует формированию основных умений, связанных с самостоятельным решением различных учебных и практических задач. Закрепление этих умений происходит в ходе самостоятельного выполнения заданий учащимися в процессе обучения. Большую роль на своих уроках я отвожу самостоятельной работе. В ходе её выполнения, наблюдая за учащимися, можно зафиксировать быстроту выполнения задания, выявить те элементы задания, которые оказались наиболее трудными для учащихся, своевременно ответить на вопросы учеников, сразу же после выполнения задания организовать проверку результатов и обсуждение различных способов решения.

Математика, как никакой другой предмет, позволяет формировать такой необходимый для самостоятельной работы навык, как навык осуществления самоконтроля за производимой деятельностью. Для того чтобы выработать у учащихся привычки и умений самопроверки выполняемой работы, использую следующее. Стараюсь создать такую ситуацию, которая провоцирует учащихся на неправильный ответ, и заставляю их критически мыслить. Иногда, предлагаю такую работу, найти ошибки в ответах, письменной работе своего товарища. При этом разрешаю учащимся задавать вопросы по обоснованию хода решения задачи, разрешаю учитывать результаты взаимопроверки при выставлении поурочных оценок и т.д. Такое стимулирование повышает ответственность учащихся за результаты проводимой ими проверки, заставляет их более тщательно продумывать ещё раз не только результаты сами по себе, но и сам ход решения, что особенно важно для отработки навыков самопроверки.

Навыки самоконтроля можно формировать на всех этапах обучения. Так при работе с определениями считаю целесообразным предоставить учащимся возможность самим дать нужное определение. (Моя роль в этом случае заключается в умелом приведении контрпримеров для выявления ошибок в ответах учащихся). Стараюсь приучать учащихся ставить самим себе вопросы типа: «Что получится с определением, если из него выкинуть слова…? Почему оно тогда будет неправильным?

Конечно, для воспитания самокритичности нужно воспитывать не только правильное критическое отношение к результатам познавательной деятельности, но и формировать у учащихся некоторые конкретные критерии правильности выполняемых заданий, критерии, позволяющие учащимся самостоятельно находить ошибки в проводимых ими решениях. К таким критериям можно отнести:

  1. Соотношение результата с действительностью (иногда достаточно проверить только размерность именованных ответов, чтобы обнаружить существенные ошибки).
  2. Соотнесение полученного результата с данными условиями в задаче и сравнение его с первоначально ожидаемым результатом. Эта проверка просто из соображения здравого смысла.
  3. Проведение выкладок в обратном порядке.
  4. Исследование ответа в предельных ситуациях, т.к. часто придельные значения могут отчётливо показать неправильность полученных формул.
  5. Решение задачи другим способом и сравнение полученных результатов.
  6. Проверки хода решения задачи с обращением внимания на следующие моменты:

- все ли условия задачи использованы;

- не использованы ли для решения предпосылки, не вытекающие непосредственно из решения задачи;

- обоснованы ли все ссылки в решении и в сделанных преобразованиях, в частности обеспечена ли равносильность выкладок;

- верны ли логические переходы.

Продуктивность самостоятельной работы зависит во многом от общих умений познавательной деятельности, поэтому ориентирую учащихся на развитие умений обобщать, классифицировать, систематизировать и строить различные схемы изучаемого материала. При этом подчёркиваю, что, например, построение таблиц, кластеров, схем, графиков в ходе изучения материала позволяет увеличить объём запоминаемой информации (по сравнению с запоминанием на слух, что владение этими умениями позволяет в дальнейшем легче ориентироваться в сходной информации, легче её усваивать и понимать.

В заключении хочется отметить, что применение  деятельностного подхода в обучении математике обеспечивает  развитие у школьников основной школы высокого уровня знаний, умений, приемов мышления, которые  в свою очередь  способствуют  повышению качества обучения по предмету.

МОБУ Дружбинская СОШ, учитель высшей категории по математике: Герат Людмила Васильевна

Доклад «Системно - деятельностный подход на уроках  математики» (обобщение опыта).


По теме: методические разработки, презентации и конспекты

Системно – деятельностный подход на уроках математики и информатики в рамках стандартов нового поколения ФГОС

Основой, обеспечивающей реализацию Федерального Образовательного Стандарта является системно – деятельностный подход, который обеспечивает:формирование готовности к саморазвитию и непрерывному о...

Системно-деятельностный подход на уроках математики

          Основной из главных задач моей работы является организация учебной деятельности таким образом, чтобы у учащихся сформировались потребности в осуществлении тво...

Организация системно- деятельностного подхода на уроках математики в 5-х классах

особенности системно-деятельностного подхода, который определяет необходимость представления нового материала через развертывание последовательности учебных задач, моделирования изучаемых процессов, и...

Системно-деятельностный подход на уроках математики

Статья была напечатана во Всероссийском СМИ "Академия педагогических идей".Конкурс "Новация"...

Презентация мастер - класса «Компетентностно - орентированные задания в структуре современного урока как средство реализации системно – деятельностного подхода на уроках математики».

laquo;Компетентностно - орентированные задания в структуре современного урока как средство реализации системно – деятельностного подхода на уроках математики»   В современных ус...