Научная статья "О математической природе симметрических орнаментов."
статья по алгебре по теме
Принцип симметрии используется в построении орнамента.
Скачать:
Вложение | Размер |
---|---|
titovich_k.grigoryan_l.simmetriya_v_ornamentakh.docx | 22.99 КБ |
Предварительный просмотр:
О математической природе симметрических орнаментов.
К.Д. Титович, Л.П. Григорян
ФГБОУ ВПО «Армавирская государственная педагогическая академия».
ipimif@mail.ru
Принцип симметрии используется в построении орнамента.
Орнамент – узор, состоящий из повторяющихся ритмически упорядоченных элементов. Часто по орнаменту можно определить, к какому времени и к какой стране относится то или иное произведение искусства.[1]
Так, в орнаментах Древнего Египта наибольшее распространение нашли растительные мотивы, и среди них особенно часто встречались листья и цветы лотоса.
Классическими стали наиболее распространенные древнегреческие орнаменты – меандр и акант.
Слово «меандр» происходит от названия очень извилистой реки в Малой Азии.
Акант – это род травянистого растения, распространенного в Средиземноморье. У него большие листья, красиво изогнутые стебли.
Орнаментальное искусство достигло совершенства на мусульманском Востоке. Для него характерно сочетание геометрических и растительных мотивов, так как Кораном было запрещено изображение людей и животных. Впоследствии, распространившись по Европе, этот вид орнамента получил название «арабеска». В исламских странах арабеска безраздельно господствует в архитектурном декоре.
Высокого развития орнамент достиг в средневековой Руси. Для русского орнамента характерны как геометрические и растительные формы, так и изображения птиц, зверей, фантастических животных и человеческих фигур. Наиболее ярко русский орнамент выражен в резьбе по дереву и вышивке. В плоском орнаменте одним из наиболее часто используемых мотивов является так называемая плетенка – различного вида переплетение полосок типа лент, ремней, стеблей цветов.
Трудно встретить человека, не любовавшегося орнаментами. Один из примеров – это обои, которыми оклеивают стены.
Орнаменты «Летящие птицы» и «Ящерицы» созданы известным голландским художником Морицом Корнилисом Эшером. В основе орнамента лежит переносная (трансляционная) симметрия.
С переносной симметрией связано важное понятие двумерной периодической структуры плоской решетки. Плоская решетка может быть образована в результате пересечения двух семейств параллельных, равноотстоящих друг от друга прямых.
Точки пересечения прямых называют узлами решетки. Чтобы задать решетку, достаточно задать ее элементарную ячейку и затем, переносить эту ячейку параллельно самой себе вдоль прямой АВ на расстояния, кратные а, либо вдоль прямой АС на расстояния, кратные b. Заметим, что элементарную ячейку данной решетки можно выбрать разными способами.
Переносная симметрия плоской решетки полностью определяется совокупностью двух векторов (а, b ).
Различают пять типов плоских решеток (пять типов переносной симметрии на плоскости).
- а=b , γ= 90° - квадратная решетка.
- а=b, γ= 90° - прямоугольная решетка.
- а=b, γ=60° - гексагональная решетка.
- а=b, γ= 90°, , γ=60° - ромбическая решетка.
- а=b , γ= 90° - косая решетка.
С переносной симметрией в трехмерном пространстве связано понятие трехмерной периодической структуры – пространственной решетки. Такая решетка может рассматриваться как результат пересечения трех семейств параллельных плоскостей. В простейшем случае длины всех ребер ячейки равны между собой, а углы между ребрами составляют 90°. В этом случае говорят о кубической решетке. Всего же существует 14 типов пространственных решеток, различающихся по типу переносной симметрии. Иначе говоря, существует 14 типов решеток Бравэ.[2]
Тип плоской решетки определяет характер переносной симметрии данного орнамента. Орнамент «Летящие птицы» основан на косой решетке, «Ящерицы» - на гексагональной решетке, а египетский орнамент – основан на квадратной решетке.
Орнаменты можно классифицировать. Всего существует 17 типов симметрии орнаментов. Любопытно, что все они были известны еще в древности, а классификация их была дана лишь в XIX веке.
По характеру композиции и расположению на украшаемой поверхности орнамент может быть нескольких видов: ленточным (его называют еще бордюром), сетчатым и розетчатым.
Периодически повторяющийся рисунок на длинной ленте называют бордюром. На практике бордюры встречаются в различных видах. Это может быть настенная роспись, украшающая стены зданий, галереи, лестничные переходы. Это может быть чугунное литье, используемое в оградах парков, решетках мостов и набережных. Это могут быть гипсовые барельефы или керамика.
Любой бордюр обладает переносной симметрией вдоль своей оси (вдоль оси переноса). Всего существует 7 типов симметрии бордюров:
- Бордюры, которые не имеют иных симметрий, кроме параллельных переносов.
- Бордюры, которые обладают наряду с переносной также зеркальной симметрией.
- Бордюры, у которых ось переноса является осью скользящего отражения.
- Бордюры, имеющие поперечные оси симметрии.
- Бордюры, имеющие поворотные оси второго порядка, перпендикулярные к плоскости бордюра.
- Бордюры, основанные на комбинировании оси скользящего отражения с поворотными осями второго порядка, перпендикулярными к плоскости бордюра.
- Бордюры, основанные на комбинировании зеркальных отражений. Такие бордюры имеют наряду с продольной также поперечные оси симметрии; как следствие возникают поворотные оси второго порядка.
Орнамент, вписанный в круг или в правильный многоугольник, называется розеткой. Этот вид орнамента замкнут и ограничен определенной геометрической формой. Для построения выбирают какую-нибудь фигуру Ф и точку О – центр поворота.[3]
При повороте вокруг точки О на угол αk=, где k=0; 1; 2;…;n-1 получается фигура Фn с заданной симметрией.
Как правило, основообразующей формой розетки служит круг. Для исполнения своего замысла художник разбивает круг на части, в одной части рисует геометрическую фигуру, а потом с помощью симметрии повторяет ее в других частях круга.
Рассмотрим замкнутые орнаменты, характерные для искусства Средней Азии XII-XVII вв. Они носят название – герих, и имеют свои особенности в композиции и в технологии исполнении.
Все герихи составлялись из правильных и звездчатых многоугольников, а также из отдельных частей этих фигур. В построении гериха использовалась окружность и ее части. Самый простой геометрический анализ позволяет сделать вывод о том, что художники-орнаменталисты при построении орнамента пользовались стороной и диагональю квадрата и их «производными». При построении орнамента они выполняли последовательно деление отрезка пополам, использовали египетский треугольник, делили окружность на 4; 8; 16; 32 части.
Последовательное выполнение нескольких преобразований в математике называется композицией преобразований.
Библиографический список:
- Макарова Т.И. «Симметрия в растительном орнаменте Древней России».
- Журнал «Квант» №3 1977г. (стр. 25)
- Акимов О.Е. «Дискретная математика. Логика,группы,графы».
По теме: методические разработки, презентации и конспекты
Интегрированный урок "Орнамент и математические принципы построения орнамента".
Взаимосвязь школьных предметов увеличивает интерес учащихся к данным предметам....
Контрольная работа "Научные методы изучения природы. Измерение физических величин"
Контрольная работа по физике для учащихся 7 класса, изучающих физику на углубленном уровне (к учебнику А.А.Пинского, В.Г.Разумовского)...
ОТКРЫТАЯ ШКОЛЬНАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ "ПРИРОДА ВСТРЕЧАЕТ ДРУЗЕЙ"
В рамках реализации авторского проекат "Твори добро, пока ты есть!" на базе МБОУ КСОШ №3 проводится научно-практическая конренция для обучающихся школы "Природа встречает друзей". Она является стартов...
Урок по биологии в 5 классе: "Научные методы познания природы."
Урок позволяет сформировать:Личностные УУД1. Сформировать умение осознавать единство и целостность окружающего мира, возможности его познаваемости и объяснимости на основе дост...
ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА естественно-научной направленности «ЗНАТОКИ ПРИРОДЫ»
Программа направлена на формирование экологической культуры, устойчивых познавательных интересов к природе и к актуальным экологическим проблемам нашего региона. Её отличительная особенность состоит в...
Научная статья на тему: "Симметрические многочлены"
Научная статья на тему: "Симметрические многочлены"...
Научные методы изучения природы
Урок по биологии для 5 класса...