рабочая программа математика 10 класс Никольский
рабочая программа по алгебре (10 класс) по теме

Адиятуллин Ильсур Ильданович

 математика 10 класс Никольский

Скачать:

ВложениеРазмер
Microsoft Office document icon matem_10_bez_dz.doc447 КБ

Предварительный просмотр:

                «Согласовано»                                                «Согласовано»                                             «Утверждено»

                Руководитель  МО                              Заместитель  директора  по  УР                    Директор  МБОУ  «Гимназия №1»

                 _______/Исхаков  Х.М../                   __________/Нигматуллова  Р.Н./                  ____________/Сафиуллина  Л.М. /

             Протокол №    _    от                             « __ »    _______  2013г.                                  Приказ № _         от

             « __ »  ______ 2013г.                                                                                                       « __ »   ______    2013г.

Муниципальное бюджетное общеобразовательное учреждение «Гимназия №1»

Елабужского муниципального района Республики Татарстан

РАБОЧАЯ  ПРОГРАММА

ПО  ПРЕДМЕТУ «МАТЕМАТИКА»

учителя  Адиятуллина Ильсура Ильдановича.

10  класс

                                                                                                                    Рассмотрено  на  заседании

                                                                                                               педагогического  совета

                                                                                                     Протокол № _   от

                                                                                                           « __ » _______ 2013г.

2013-2014  учебный  год

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по математике составлена для профильного 10  класса на основе федерального компонента государственного стандарта среднего (полного) общего образования, Примерной программы среднего (полного) общего образования по  математике на профильном уровне с использованием рекомендаций авторских программ С.М. Никольского и др. и  Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева и др., с учётом учебного плана муниципального бюджетного общеобразовательного учреждения «Гимназия №1»на 2013-2014 учебный год

Цели

Изучение математики в старшей школе на профильном  уровне направлено на достижение следующих целей:

  • формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
  • овладение  устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения  школьных  естественно-научных дисциплин,  для продолжения образования и освоения избранной специальности на современном уровне;
  • развитие логического мышления, алгоритмической культуры,  пространственного воображения, развитие математического мышления и интуиции,  творческих способностей на уровне, необходимом для продолжения образования и  для самостоятельной  деятельности в области математики и ее приложений  в будущей профессиональной деятельности;
  •   воспитание средствами математики культуры личности:  знакомство с историей развития математики, эволюцией математических  

идей, понимание значимости математики для общественного прогресса.

В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;

решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;

планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей  работы, соотнесения их с поставленной задачей, с личным жизненным опытом;

самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для изучения математики в 10 классе отводится 210 ч из расчета 6 ч в неделю.

СОДЕРЖАНИЕ ОБУЧЕНИЯ

ЧИСЛОВЫЕ И БУКВЕННЫЕ ВЫРАЖЕНИЯ (31 ч)

Делимость целых чисел. Деление с остатком[10]. Сравнения[11]. Решение задач с целочисленными неизвестными[12].

Многочлены от одной переменной[17].  Делимость многочленов. Деление многочленов с остатком[19]. Рациональные корни многочленов с целыми коэффициентами[20]. Схема Горнера. Теорема Безу[19]. Число корней многочлена[20]. Многочлены от двух переменных[17]. Формулы сокращенного умножения для старших степеней. Бином Ньютона[18]. Многочлены от нескольких переменных, симметрические многочлены[17]. 

Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства[52-61]. Понятие о степени с действительным показателем. Свойства степени с действительным показателем[87].

Логарифм числа. Основное логарифмическое тождество[106]. Логарифм произведения, частного, степени; переход к новому основанию[107]. Десятичный и натуральный логарифмы[109], число е [86].

Преобразования выражений, включающих арифметические операции, а также операции возведения в степень и  логарифмирования[108].

Тригонометрия (40 ч)

Синус, косинус[136], тангенс, котангенс[141] произвольного угла. Радианная мера угла[135]. Синус, косинус, тангенс и котангенс числа[138]. Основные тригонометрические тождества[137]. Формулы приведения[137,151]. Синус, косинус и тангенс суммы и разности двух углов[149,150,152,153]. Синус и косинус двойного угла. Формулы половинного угла[156, 157]. Преобразования суммы тригонометрических функций в произведение[154, 155] и произведения в сумму[158]. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования тригонометрических выражений[159].

Простейшие тригонометрические уравнения. Решения тригонометрических уравнений. Простейшие тригонометрические  неравенства[170-183].

Арксинус[139], арккосинус[140], арктангенс[144], арккотангенс[145].

ФУНКЦИИ (15 ч)

Функции.  Область определения и множество значений. График функции[51]. Степенная функция с натуральным показателем, её свойства и  график[111].

Тригонометрические функции, их свойства и графики, периодичность, основной период[160-169].

Показательная функция (экспонента), её свойства и график[88,89].

Логарифмическая функция, её свойства и график[110].

НАЧАЛА  МАТЕМАТИЧЕСКОГО АНАЛИЗА (5 ч)

Понятие о пределе последовательности[81]. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей[82]. Бесконечно убывающая геометрическая прогрессия и ее сумма[85]. Теоремы о пределах последовательностей[83]. Переход к пределам в неравенствах[84].

УРАВНЕНИЯ И НЕРАВЕНСТВА (27 ч)

Решение рациональных[21], показательных, логарифмических уравнений и неравенств[121-133]. Решение иррациональных и тригонометрических уравнений и неравенств[29-30].

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем[22]. Решение систем уравнений с двумя неизвестными (простейшие типы) [22,31,32]. Решение систем неравенств с одной переменной[27,28].

Доказательства неравенств. Неравенство о среднем арифметическом и среднем геометрическом двух чисел[9]. Метод интервалов[23].

ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ (14 ч)

Табличное и графическое представление данных. Числовые характеристики рядов данных[186].

Поочередный и одновременный выбор нескольких элементов из конечного множества[7]. Формулы числа перестановок[4], сочетаний[5], размещений[6]. Решение комбинаторных задач[8]. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля[18].

Элементарные и сложные события[184]. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события[185]. Понятие о независимости событий.  Вероятность и статистическая частота наступления события[188]. 

Несколько часов (6) оставляю для подготовки к ЕГЭ в 11 классе

ГЕОМЕТРИЯ (67 ч)

Геометрия на плоскости ( 8ч) [193-200].

Свойство биссектрисы угла треугольника. Решение треугольников. Вычисление биссектрис, медиан, высот, радиусов вписанной и описанной окружностей. Формулы  площади треугольника: формула Герона, выражение площади треугольника через радиус вписанной и описанной окружностей.

Вычисление углов с вершиной внутри и вне круга, угла между хордой и касательной.

Теорема о произведении отрезков хорд. Теорема о касательной и секущей.  Теорема о сумме квадратов сторон и диагоналей параллелограмма

Вписанные и описанные многоугольники. Свойства и признаки вписанных и описанных четырехугольников.

Геометрические места точек.

Решение задач с помощью геометрических преобразований и геометрических мест.

Теорема Чевы и теорема Менелая.

Эллипс, гипербола, парабола как геометрические места точек. Неразрешимость классических задач на построение.

Прямые и плоскости в пространстве (35ч).

 Основные понятия стереометрии (точка, прямая, плоскость, пространство). Понятие об аксиоматическом способе построения геометрии[13-16].

Пересекающиеся, параллельные[35]  и скрещивающиеся[38]  прямые. Угол между прямыми в пространстве[39]. Перпендикулярность прямых[62]. Параллельность[36]  и перпендикулярность прямой и плоскости, признаки и свойства[63-65]. Теорема о трех перпендикулярах. Перпендикуляр и наклонная к плоскости[67]. Угол между прямой и плоскостью[68].

Параллельность плоскостей[42], перпендикулярность плоскостей[71], признаки и свойства[43-44]. Двугранный угол, линейный угол двугранного угла[70].

Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми[67].

Параллельное проектирование. Ортогональное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур. Центральное проектирование[73].

Многогранники (15ч). 

Вершины, ребра, грани многогранника. Развертка[92]. Многогранные углы[70]. Выпуклые  многогранники. Теорема Эйлера[92].

Призма, ее  основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма[93]. Параллелепипед. Куб[72].

Пирамида, ее  основание, боковые ребра, высота, боковая поверхность[96]. Треугольная пирамида[97]. Правильная пирамида[98]. Усеченная пирамида[100].  

Симметрии в кубе, в параллелепипеде, в  призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная) [102].

Сечения многогранников. Построение сечений[100].

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр) [101].

Координаты и векторы (9ч). 

Векторы. Модуль вектора. Равенство векторов[112]. Сложение векторов[113]  и умножение вектора на число[114]. Коллинеарные векторы[112]. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы[115]. Разложение по трем некомпланарным векторам[115].

Повторение курса 10 класса(11ч).

Повторение, подготовка к ЕГЭ. Тестирование в формате ЕГЭ[201-210].

В квадратных скобках указаны номера уроков по теме.

Раздел

Количество часов

1

Числовые и буквенные выражения

31

2

Тригонометрия

40

3

Функции

15

4

Начала математического анализа

5

5

Уравнения и неравенства

27

6

Элементы комбинаторики, статистики и теории вероятностей

14

7

Геометрия

67

8

Повторение курса 10 класса

11

Итого

210

Требования к уровню подготовки выпускников

В результате изучения математики на профильном уровне в старшей школе  ученик должен

Знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
  • значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
  • идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач  и внутренних задач математики;
  • значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
  • возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;
  • универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
  • различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
  • роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;
  • вероятностных характер различных процессов и закономерностей окружающего мира.

Числовые и буквенные выражения

Уметь:

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости  вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
  • применять понятия, связанные с делимостью целых чисел, при решении математических задач;
  • находить корни многочленов с одной переменной, раскладывать многочлены на множители;
  • проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.

Функции и графики

Уметь

  • определять значение функции по значению аргумента при различных способах задания функции;
  • строить графики изученных функций, выполнять преобразования графиков;
  • описывать по графику и по формуле поведение и свойства  функций;
  • решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.

Начала математического анализа

Уметь находить сумму бесконечно убывающей геометрической прогрессии.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для решения геометрических, физических, экономических и других прикладных задач.

Уравнения и неравенства

Уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;
  • доказывать несложные неравенства;
  • решать текстовые задачи с помощью  составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;
  • изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
  • находить приближенные решения уравнений и их систем, используя графический метод;
  • решать уравнения, неравенства и системы с применением  графических представлений.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для построения и исследования простейших математических моделей.

Элементы комбинаторики, статистики и теории вероятностей

Уметь:

  • решать простейшие комбинаторные задачи методом перебора, а также с  использованием известных формул, треугольника Паскаля; вычислять коэффициенты  бинома Ньютона по формуле и с использованием  треугольника Паскаля;
  • вычислять, в простейших случаях, вероятности событий на основе подсчета числа исходов.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков; для  анализа информации статистического характера.

Геометрия

Уметь:

  • соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; различать и анализировать  взаимное расположение фигур;        
  • изображать геометрические фигуры и тела, выполнять чертеж по условию задачи;
  • решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат;
  • проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса;
  • вычислять линейные элементы и углы в пространственных конфигурациях, объемы и площади поверхностей пространственных тел и их простейших комбинаций;
  • строить сечения многогранников.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;        
  • вычисления длин, площадей и объемов реальных объектов при решении практических задач, используя при необходимости справочники и вычислительные  устройства.

Критерии и нормы оценки знаний, умений и навыков обучающихся  по   математике.

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;
  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;
  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  •  допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

 Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2.Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
  • продемонстрировал знание теории ранее изученных сопутствующих тем,  сформированность  и устойчивость используемых при ответе умений и навыков;
  • отвечал самостоятельно, без наводящих вопросов учителя;
  • возможны одна – две  неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
  • допущены ошибка или более двух недочетов  при освещении второстепенных вопросов или в выкладках,  легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;
  • обнаружено незнание учеником большей или наиболее важной части учебного материала;
  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.                                                                       

Учебно-тематическое  планирование  

по  математике

Класс  10

Учитель:  Адиятуллин И.И.

Количество  часов

Всего  210  часов,  в  неделю  6  часов.

Плановых  контрольных  уроков  15

Планирование  составлено  на  основе:

федерального компонента государственного стандарта среднего (полного) общего образования,

Примерной программы среднего (полного) общего образования по  математике на профильном уровне с использованием рекомендаций авторских программ С.М. Никольского и др. и  Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева и др., с учётом учебного плана муниципального бюджетного общеобразовательного учреждения «Гимназия №1».

-       Учебники:

Алгебра и начала анализа: учеб. для 10 кл. общеобразовательных учреждений /С.М. Никольский и др.- М.: Просвещение, 2011г.

Геометрия: учеб. Для 10-11 кл. общеобразовательных учреждений (базовый и профильный уровень) / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Л.С. Киселева, Э.Г. Позняк – М.:Просвещение, 2010.

         

Календарно-тематическое планирование

6 часов  в  неделю.  Всего  210 часов

Тема урока

Кол-во    часов

Виды работ

Планируемые результаты освоения материала

Дом.

Задание

Дата проведения

 План

факт.

Примечание

Действительные числа (12 часов)

1

Вводный урок Понятие действительного числа

1

Беседа

Знать/ понимать значение математической науки для решения задач, возникающих в теории и практике.

 Знать идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики.

1.4(б),1.5(б),1.7(б,г,е)

2.09

2

Множества чисел. Свойства действительных чисел

1

ИНМ

Знать обозначения множеств чисел, определение подмножества, пересечения и объединения множеств

Знать свойства действительных чисел.

 Уметь изображать на координатной оси числовые промежутки

1.24(а),1.2(е-и),1.20

3.09

3

Метод математической индукции

1

ИНМ

Знать принцип математической индукции

Уметь доказывать справедливость равенств, неравенств методом математической индукции

1.36(а), 1.39(б)

4.09

4

Перестановки

1

ЗМ

Знать формулу нахождения числа перестановок из n элементов.

Уметь решать простейшие комбинаторные задачи с использованием известных формул.

1.47(б,г.д,е),1.46(а-д,к)

4.09

5

Размещения

1

ЗМ

Знать формулу нахождения числа размещений из n элементов по к.

Уметь решать простейшие комбинаторные задачи с использованием известных формул.

1.59(д,е).

1.60

5.09

6

Сочетания

1

СР

Знать формулу нахождения числа сочетаний из n элементов по к.

Уметь различать комбинаторные соединения

1.70(б,в,г), 1.65, 1.66

6.09

7

Поочерёдный и одновременный выбор нескольких  элементов из конечного множества.

1

ИНМ

Уметь решать простейшие комбинаторные задачи

Задачи из ЕГЭ

9.09

8

Решение комбинаторных задач.

1

СР

Уметь решать простейшие комбинаторные задачи с использованием известных формул

Задачи из ЕГЭ

10.09

9

Доказательство числовых неравенств. Неравенство о среднем арифметическом и среднем геометрическом двух чисел.

1

ИНМ

Уметь доказывать числовые неравенства, неравенство о среднем арифметическом и среднем геометрическом двух чисел.

1.76(а,б,в),

1.77(г),1.80

11.09

10

Сравнение по модулю m

1

РнО

Уметь выполнять сравнение по модулю m; решать задачи на сравнения

1.92, 1.96

11.09

11

Задачи с целочисленными неизвестными

1

ИНМ

Иметь представление о диофантовых уравнениях, задачах с целочисленными неизвестными  

Уметь решать уравнения в целых числах

1.105, стр.40-43

12.09

Введение. Аксиомы стереометрии (4 часа)

12

Основные понятия стереометрии. Аксиомы стереометрии

1

ИНМ

Знать: Основные понятия стереометрии (точка, прямая, плоскость, пространство).

Уметь: распознавать на чертежах и моделях пространственные формы

8.9, стр 5-6(аксиомы)

13.09

13

Некоторые следствия из аксиом

1

ЗМ

Знать: основные аксиомы стереометрии

Уметь: описывать взаимное расположение точек, прямых, плоскостей с помощью аксиом стереометрии

14,15,стр. 6-7(следствия)

16.09

14

Решение задач на применение аксиом стереометрии и их следствий

2

СР

Иметь представление об аксиоматическом способе построения геометрии

Знать: основные аксиомы стереометрии.

Уметь: применять аксиомы при решении задач

2.4, аксиомы

17.09

15

Решение задач на применение аксиом стереометрии и их следствий

ЗМ

2.5

18.09

Рациональные уравнения и неравенства (19 часов)

16

Рациональные выражения. Многочлены

1

ИНМ

Знать: определение рациональных выражений, многочлены от одной переменной, многочлены от двух переменных, многочлены от  нескольких переменных, симметрические многочлены.

Уметь проводить преобразования буквенных выражений

2.6, 2.7

18.09

17

Формулы бинома Ньютона, суммы и разности степеней

1

ИНМ

Знать формулу бинома Ньютона, формулы суммы и разности степеней Уметь находить биномиальные коэффициенты с помощью формулы и треугольника Паскаля, выполнять разложение по формуле бинома Ньютона; доказывать неравенства и сокращать дроби, используя бином Ньютона

2.18, 2.19

19.09

18

Деление многочленов с остатком.

1

СР

Знать алгоритм Евклида, теорему Безу,

Уметь делить многочлен на двучлен «столбиком», с помощью схемы Горнера

2.23(а), 2.24, 2.26

20.09

19

Корень многочлена

1

ДЗ

Знать определение корня многочлена, рациональные корни многочленов с целыми коэффициентами, число корней многочлена.

2.48, стр.60-68 изучить

23.09

20

Контрольная работа №1  (срез остаточных знаний за 9 класс). Делимость чисел. Деление с остатком

1

КР

Уметь применять полученные знания при выполнении заданий

Знать основную теорему арифметики

Уметь применять понятия, связанные с делимостью чисел, делением с остатком.

1.85,1.88

24.09

21

Рациональные уравнения Свойства рациональных уравнений

1

ИНМ

Знать определение рациональных уравнений, распадающихся, возвратных  уравнений.

Уметь решать рациональные уравнения

2.53

25.09

22

Системы рациональных уравнений

1

СР

Знать основные приёмы решения систем уравнений с двумя неизвестными. Равносильность уравнений, неравенств, систем.

Уметь решать системы уравнений с двумя переменными методом подстановки, алгебраического сложения, введением новых переменных, решать однородные уравнения.

2.55

26.09

23

Метод интервалов

1

ЗМ

Иметь представление о равносильности уравнений, неравенств

Уметь решать рациональные неравенства методом интервалов

2.67(б,г,е), 2.68(а,в,д)

27.09

24

Рациональные неравенства.

1

ЗМ

2.76(б,г,е), 2.77(б,г)

28.09

25

Нестрогие неравенства

1

СР

2.79(а,б),

2.75(б,е)

1.10

26

Решение неравенств

1

ЗМ

Уметь решать рациональные неравенства с применением графических представлений, введением новой переменной.

2,3,4 из ДМ

02.10

27

Системы рациональных неравенств с одной переменной

1

ЗМ

Уметь решать нестрогие дробно-рациональные неравенства, системы рациональных неравенств

2.83

02.10

28

Системы рациональных неравенств

1

ЗМ

Уметь решать уравнения с модулем

2.87

03.10

29

Иррациональные уравнения

1

ИНМ

Уметь решать иррациональные уравнения.

2.92(б,г,е), 2.91(б,в)

04.10

30

Иррациональные неравенства

1

ДЗ

Уметь решать иррациональные неравенства.

2.80(устно),2.81

05.10

31

Решение уравнений и неравенств и их систем

1

СР

Уметь решать задачи с помощью составления уравнений и неравенств, их систем

2.98, 2.99(г)

08.10

32

Подготовка к контрольной работе

1

ЗМ

Знание формул, умения решать рациональные и иррациональные уравнения, неравенства, умение преобразовывать выражения

1.3а из ДМ, №6-инд. Задание

09.10

  33

Контрольная работа №2 по теме «Рациональные уравнения и неравенства»

1

КР

Уметь применять полученные знания при выполнении заданий

10.10

34

Анализ контрольной работы

1

РнО

Уметь применять полученные знания при выполнении заданий

П.4, п.5, №48

11.10

Параллельность прямых и плоскостей (16 часов)

35

Параллельные прямые в пространстве, параллельность трех прямых

1

ИНМ

Знать: определение параллельных и пересекающихся прямых в пространстве

Уметь: анализировать в простейших случаях взаимное расположение прямых в пространстве, используя определение параллельных прямых

Повторить п.4, п.5

14.10

36

Параллельность прямой и плоскости

1

ИНМ

Знать: признак параллельности прямой и плоскости, их свойства.

Уметь: описывать взаимное расположение прямой и плоскости в пространстве, применять признак при доказательстве параллельности прямой и плоскости

32(анализ),

27, п.6

15.10

37

Решение задач на параллельность прямой и плоскости

1

Решение задач

16.10

38

Скрещивающиеся прямые

1

СР)

Знать: определение и признак скрещивающихся прямых

Уметь: распознавать на чертежах и моделях скрещивающиеся прямые

41,42

16.10

39

Углы с сонаправленными сторонами, угол между прямыми

1

ИНМ

Иметь представление об углах между пересекающимися, параллельными и скрещивающимися прямыми в пространстве

Уметь: находить угол между прямыми в пространстве на модели куба

46

17.10

40

Решение задач на нахождение угла между прямыми

1

Решение задач

Знать: как определяется угол между прямыми

Уметь: решать простейшие стереометрические задачи на нахождение углов между прямыми

47

18.10

41

Контрольная работа №3 по теме: «Взаимное расположение прямых в пространстве»

1

КР

Уметь применять полученные знания при выполнении заданий

21.10

42

Анализ контрольной работы. Параллельность плоскостей

1

РнО

Знать: определение и признак параллельности прямой и плоскости.

Уметь: находить на моделях параллелепипеда параллельные, скрещивающиеся и пересекающиеся прямые, определять взаимное расположение прямой и плоскости

54,59(анализ)

22.10

43

Свойства параллельных плоскостей

1

ИНМ

Знать: определение, признак, свойства параллельных плоскостей

Уметь: выполнять чертеж по условию задачи, применять признак и свойства при решении задач

56,58

23.10

44

Решение задач по теме «Свойства параллельных плоскостей»

1

Решение задач

70,77

23.10

45

Тетраэдр, параллелепипед

1

ЗМ

Знать: элементы тетраэдра и параллелепипеда, свойства противоположных граней и его диагоналей.

114

24.10

46

Решение задач по теме «Тетраэдр, параллелепипед».

1

СР

Уметь: распознавать на чертежах и моделях параллелепипед и тетраэдр и изображать на плоскости

Дом. контр. работа

25.10

47

Решение задач по теме «Тетраэдр, параллелепипед»

1

ЗМ

Уметь: строить сечение плоскостью, параллельной граням параллелепипеда, тетраэдра; строить диагональные сечения в параллелепипеде, тетраэдре; сечения плоскостью, проходящей через ребро и вершину параллелепипеда

Подготовиться к контр. работе

28.10

48

Контрольная работа №4 по теме: «Параллельность прямых и плоскостей»

1

КР

Уметь применять полученные знания при выполнении заданий

29.10

49

Анализ  контрольной  работы

1

РнО

Уметь выполнять работу над ошибками, допущенными в контрольной работе

3.2(а,б,в),

3.3(а,б,в),

3.4(а,б),

30.10

50

Урок  повторения

1

ФО

Знать: определение и признаки параллельности плоскости.

Уметь: строить сечения параллелепипеда и тетраэдра плоскостью, параллельной грани

3.6(б,г,е),

3.7(в)

30.10

Корень степени n (11 часов)

51

Понятие функции и ее графика

1

ИНМ

Знать: понятие функции и ее графика. Область определения и множество значений функции. Способы задания функций. Непрерывность, чётность и нечётность функции.

3.32

31.10

52

Функция y=xn

 Свойства y=xn

1

ИНМ

Знать: свойства y=xn

Уметь: определять значение функции по значению аргумента при различных способах задания функции, строить графики изученных функций, выполнять преобразования графиков.

3.33

31.10

53

Понятие корня в степени n

1

СР

Знать: понятие корня степени n, что не существует корня четвёртой степени из отрицательного числа

3.46, 3,47

  01.11

54

Корни четной и нечетной степени

1

ЗМ

Уметь находить значение корня натуральной степени

3.62

02.11

55

Корни четной и нечетной степени

1

ЗМ

Уметь находить значение корня натуральной степени

3.57, 3.62

12.11

  56

Арифметический корень

1

ЗМ

Знать: определение арифметического корня

3.64, 3.65

13.11

  57

Свойства арифметического корня.

1

ИНМ

Знать свойства арифметического корня.

Уметь упрощать выражения, применяя свойства арифметического корня.

3.74, 3.75

14.11

58

 Свойства корней степени n

1

СР

Знать свойства корней степени n. Уметь упрощать выражения, применяя свойства корней степени n.

3.76, 3.77

14.11

59

Решение задач

1

ЗМ

Уметь проводить преобразования числовых и буквенных выражений, включающих степени и радикалы, определять значение функции по значению аргумента при различных способах задания функции;

3.85, 3.86

15.11

60

Функция y=n√x

1

ИНМ

Знать свойства функции при n=2m (x0), при n=2m+1

Уметь определять значение функции по значению аргумента, строить график изученной функции.

3.107, 3.105

16.11

  61

Контрольная работа №5 по теме «Корень степени п»

1

КР

Уметь применять полученные знания при выполнении заданий

19.11

Перпендикулярные прямые и плоскости в пространстве (16 часов)

62

Анализ контрольной работы

Перпендикулярные прямые в пространстве

1

РнО

Знать: определение перпендикулярных прямых, теорему о параллельных прямых, перпендикулярных к третьей прямой; определение прямой, перпендикулярной к плоскости, и свойства прямых, перпендикулярных к плоскости.

Уметь: распознавать на моделях перпендикулярные прямые в пространстве; использовать при решении стереометрических задач теорему Пифагора

115, 117

20.11

63

Параллельные прямые, перпендикулярные к плоскости

1

ИНМ

П.16(обр.

теорема),

124

21.11

64

Признак перпендикулярности прямой и плоскости

1

ИНМ

Знать: признак перпендикулярности прямой и плоскости.

Уметь применять признак при решении задач на доказательство перпендикулярности прямой к плоскости параллелограмма, ромба, квадрата.

П.17(задача на стр.37)

126

21.11

65

Теорема о прямой, перпендикулярной к плоскости

1

СР

Знать: теорему о прямой, перпендикулярной к плоскости.

Уметь: применять теорему для решения стереометрических задач

Уметь: находить расстояние от точки, лежащей на прямой, перпендикулярной к плоскости квадрата, правильного треугольника, ромба до их вершин, используя соотношения в прямоугольном треугольнике

128,129

22.11

66

Решение задач по теме «Перпендикулярность прямой и плоскости»

1

СР

133,136

23.11

67

Расстояние от точки до плоскости. Теорема о трех перпендикулярах

1

Урок-лекция

Иметь: представление о наклонной и её проекции на плоскость.

Знать: определение расстояний от точки до плоскости, от прямой до плоскости, расстояние между параллельными плоскостями, между скрещивающимися прямыми.

Инд. карточки

26.11

68

Угол между прямой и плоскостью

1

ИНМ

Знать: теорему о трех перпендикулярах; определение угла между прямой и плоскостью.

Уметь: применять теорему о трех перпендикулярах при решении задач на доказательство перпендикулярности двух прямых, определять расстояние от точки до плоскости; изображать угол между прямой и плоскостью на чертежах

165

27.11

69

Решение задач по теме «Теорема о трех перпендикулярах, угол между прямой и плоскостью»

1

СР

Уметь: находить наклонную, её проекцию, знать длину перпендикуляра и угол между прямой и плоскостью, используя соотношения в прямоугольном треугольнике

28.11

70

Двугранный угол. Многогранный угол.

1

ИНМ

Знать определение двугранного угла, линейного угла двугранного угла.

Иметь представление о многогранных углах.

Уметь: строить линейный угол двугранного угла

175,п.22 изучить

28.11

71

Признак перпендикулярности двух плоскостей

1

ИНМ

Знать: определение и признак перпендикулярности двух плоскостей.

Уметь: распознавать и описывать взаимное расположение плоскостей в пространстве, выполнять чертеж по условию задачи

185,176

29.11

72

Прямоугольный параллелепипед, куб.

1

ЗМ

Знать: определение прямоугольного параллелепипеда, куба, свойства прямоугольного параллелепипеда, куба.

Уметь: применять свойства прямоугольного параллелепипеда при нахождении его диагоналей

30.11

73

Параллельное проектирование, изображение пространственных фигур

1

ИНМ

Знать: основные свойства параллельного проектирования прямой, отрезка, параллельных отрезков; иметь представление об ортогональном проектировании,

Уметь: строить параллельную проекцию на плоскости отрезка треугольника, параллелограмма, трапеции, применять теорему о  площади ортогональной проекции многоугольника при решении стереометрических задач.

187(в), 189

3.12

74

Решение задач по теме «Перпендикулярность плоскостей»

1

СР

Знать: определение куба, параллелепипеда.

Уметь: находить диагональ куба, находить угол между диагональю куба и плоскостью одной из его граней; находить измерения прямоугольного параллелепипеда, находить угол между гранью и диагональным сечением прямоугольного параллелепипеда, куба

205,207

4.12

75

Подготовка к контрольной работе

1

ЗМ

Уметь: находить наклонную или её проекцию, используя соотношения в прямоугольном треугольнике; находить угол между диагональю прямоугольного параллелепипеда и одной из его граней; доказывать перпендикулярность прямой и плоскости, используя признак перпендикулярности, теорему о трех перпендикулярах

196. стр.54, №10

5.12

76

Контрольная работа №6 по теме Перпендикулярность плоскостей

1

КР

Уметь применять полученные знания при выполнении заданий

5.12

77

Анализ  контрольной  работы

1

РнО

Уметь выполнять работу над ошибками, допущенными в контрольной работе

3 задачи в тетради

6.12

Степень положительного числа (14 часов)

78

Степень с рациональным показателем

1

ИНМ

Уметь находить значения степени с рациональным показателем

П.4.1, 4.2(б), 4.3(в)

7.12

79

Свойства степени с рациональным показателем

1

ИНМ

Знать свойства степени с рациональным показателем

Уметь проводить преобразования числовых и буквенных выражений, включающих степени и радикалы

4.21(б), 4.20

10.12

80

Решение задач

1

СР

4.22(а,б,в), 4.17(ж,з)

11.12

81

Понятие предела последовательности

1

ИНМ

Знать понятие предела последовательности, как доказать существование предела монотонной ограниченной последовательности.

Уметь вычислять пределы последовательностей

4.30, п.4.3 изучить

12.12

82

Понятие предела последовательности

1

ЗМ

4.32,(г,д,е),

П.4.4

12.12

83

Свойства пределов

1

1

ИНМ

Знать свойства пределов, теоремы о пределах последовательностей, использование пределов в доказательстве неравенств.

Иметь представление о длине окружности и площади круга, как пределы последовательностей

4.34, 4.35(б,в,д,е,и)

13.12

84

Применение свойств

ЗМ

4.38(б,г), 4.39(б,в), 4.41(в,г)

14.12

85

Бесконечно убывающая геометрическая прогрессия

1

ИНМ

Знать определение бесконечно убывающей геометрической прогрессии и формулу её суммы.

Уметь находить сумму бесконечно убывающей прогрессии

4.48, п.4.6 изучить

17.12

86

Число е

1

ИНМ

Иметь представление о числе е.

4.56, 4.57

18.12

87

Степень с иррациональным показателем.

1

ИНМ

Иметь представление о степени с иррациональным  показателем, с действительным показателем.

Знать свойства степени с действительным показателем.

Уметь находить значения корня, степени с действительным  показателем, используя при необходимости вычислительные устройства

4.55

19.12

88

Показательная функция

1

ИНМ

Знать: степень с рациональным показателем, понятие о степени с действительным показателем.

Уметь строить график показательной функции, читать графики, графически решать показательные уравнения

4.59

19.12

89

Свойства показательной функции

1

ЗМ

Знать свойства функции у=ах ,свойства степени с действительным показателем.  

4.61(г,д,з), 4.53

20.12

90

Контрольная работа№7 по теме «Степень положительного числа»

1

КР

Уметь применять полученные знания при выполнении заданий

21.12

91

Анализ контрольной работы

1

РнО

Уметь выполнять работу над ошибками, допущенными в контрольной работе

Индив.задания

24.12

Многогранники (14 часов)

92

Понятие многогранника

1

ИНМ

Иметь: представление о многограннике, о выпуклом многограннике, о многогранных углах, о развёртке

Знать: элементы многогранника: вершины, ребра, грани; теорему Эйлера ().

25.12

93

Призма

1

ИНМ

Иметь: представление о призме как о пространственной фигуре, её элементах (основания, боковые рёбра, высота, боковая поверхность), о прямой и наклонной, правильной призме.

Знать: формулу площади полной поверхности призмы.

Уметь: изображать призму, выполнять чертежи по условию задачи

241

26.12

94

Решение задач на нахождение площади полной и боковой поверхности

1

ЗМ

Уметь: находить площадь боковой и полной поверхности прямой призмы.

242

26.12

95

Решение задач на нахождение площади полной и боковой поверхности

1

ЗМ

Знать: определение правильной призмы.

Уметь: изображать правильную призму на чертежах, строить её сечение, находить площади полной и боковой поверхности.

П.25-29 повторить

27.12

96

Пирамида

1

ИНМ

Знать: определение пирамиды, её элементов.

28.12

97

Треугольная пирамида

1

ЗМ

 Уметь: изображать пирамиду на чертежах; строить сечения, находить площадь боковой поверхности пирамиды, основание которой – равнобедренный или прямоугольный треугольник

258,253

14.01

98

Правильная пирамида

1

ИНМ

Знать: определение правильной пирамиды.

Уметь: решать задачи на нахождение апофемы, бокового ребра, площади основания правильной пирамиды

259,255

15.01

99

Решение задач на нахождение площади боковой поверхности пирамиды

1

ЗМ

Уметь: изображать пирамиду на чертежах; находить площадь боковой поверхности пирамиды

269, стр.64 доказательство теоремы

16.01

100

Построение сечений. Усечённая пирамида.

1

ИНМ

Знать: элементы усечённой пирамиды, виды пирамид.

Уметь: находить площадь боковой поверхности усечённой пирамиды, строить сечения многогранников

250, п.30 изучить

16.01

101

Понятие правильного многогранника

1

СР

Иметь представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр, икосаэдр)

Уметь: распознавать на чертежах и моделях правильные многогранники

П.36,37 изучить, №273-275(один по желанию)

17.01

102

Симметрия в пространстве

1

ПР

Знать: виды симметрии в пространстве (центральная, осевая и зеркальная), о симметрии в кубе, в параллелепипеде, в призме и пирамиде. Примеры симметрии в окружающем мире.

Уметь: определять центры симметрии, оси симметрии, плоскости симметрии (элементы симметрии) многогранника

Стр.73, ответить на вопросы

18.01

103

Решение задач по теме «Многогранники»

1

ЗМ

Знать: основные многогранники.

Уметь: распознавать на моделях и чертежах, выполнять чертежи по условию задачи, находить площадь поверхности многогранников

№3 в тетради, подготовиться к контр. работе

21.01

104

Контрольная работа №8 по теме: «Многогранники»

1

КР

Уметь: стоить сечения призмы, пирамиды плоскостью, параллельной грани.

Уметь: находить элементы правильной n- угольной пирамиды (n = 3, 4); находить площадь боковой поверхности пирамиды, призмы, основания которых – равнобедренный или прямоугольный треугольник.

Повторить параграф 1,2

22.01

105

Анализ  контрольной  работы

1

РнО

Уметь выполнять работу над ошибками, допущенными в контрольной работе

Сделать модель правильного многогранника

23.01

Логарифмы (6 часов)

106

Понятие логарифмов

1

ИНМ

Знать: определение  логарифма, логарифмическое тождество

Уметь находить значения логарифма, пользоваться оценкой и прикидкой при расчётах, находить значение числового выражения.

5.7(г-и), 5.8(г-и), 5.9(г-м)

23.01

107

Свойства логарифмов

1

ИНМ

Знать: основные свойства  логарифмов

5.14, 5.15

24.01

108

Применение свойств логарифмов

1

ЗМ

Уметь находить значения логарифма, пользоваться оценкой и прикидкой при расчётах, выполнять преобразования, опираясь на свойства, находить значение числового выражения.

5.17(б,г,е), 5.18(б,г,е), 5.12(г,е,з), 5.13(г,д,е)

25.01

109

Десятичный и натуральный логарифмы

1

ИНМ

Уметь находить десятичные логарифмы(приближенные вычисления) с помощью таблиц или калькулятора.

5.21, 5.23, 5.25, 5.26

28.01

110

Логарифмическая функция

1

ИНМ

Уметь строить график логарифмической функции, выполнять преобразования графиков, описывать по графику и по формуле поведение и свойства функций

5.32(б,в), 5.35(б,в,г)

29.01

111

Степенные функции

1

ИНМ

Иметь представление о степенной функции

Знать: свойства степенной функции и как строить график.

5.49(а.в), п.5.5

30.01

Векторы в пространстве (9 часов)

112

Понятия вектора. Равенство векторов

1

ИНМ

Знать: определение вектора в пространстве, его длины, равных векторов, коллинеарных векторов,  правила сложения и вычитания векторов.

П.34,35, 325(д), 326

30.01

113

Сложение и вычитание векторов.

1

Практичес

кая работа

(20 мин)

Уметь: находить сумму и разность векторов с помощью правила треугольника и многоугольника, сумму нескольких векторов.

341,347

31.01

114

Умножение вектора на число

1

ИНМ

Знать: как определяется умножение вектора на число.

362, 366

1.02

115

Компланарные векторы

1

ИНМ

Знать определение компланарных векторов, о разложение вектора по двум некомпланарным векторам.

Уметь: выражать один из коллинеарных векторов через другой, на модели параллелепипеда находить компланарные векторы

359, 361

4.02

116

Правило параллелепипеда

1

СР

Знать: правило параллелепипеда

Уметь: выполнять сложение трех некомпланарных векторов с помощью правила параллелепипеда

372, 369

5.02

117

Разложение вектора по трем некомпланарным векторам

1

ИНМ

Знать теорему о разложении вектора по трём некомпланарным векторам.

364, п.41 изучить

6.02

118

Решение  задач

1

ЗМ

Уметь: решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей) и проводить доказательные рассуждения в ходе решения задач; систематизировать, анализировать и классифицировать информацию, использовать разнообразные информационные источники, включая учебную и справочную литературу, иметь навыки поиска необходимой информации

365, подготовиться к КР

6.02

119

Контрольная работа №9 по теме: «Векторы»

1

КР

Уметь применять полученные знания при выполнении заданий

Повторить главу 4

7.02

120

Анализ КР №9. Итоговое повторение

1

Работа по карточкам

Уметь выполнять работу над ошибками, допущенными в контрольной работе

Из ЦОР посмотреть тему «Векторы в пространстве»

8.02

Показательные и логарифмические уравнения и неравенства (12 часов)

121

Простейшие показательные уравнения

1

ИНМ

Знать методы решения уравнений.

Уметь решать простейшие  показательные уравнения

6.6(в,г,е) 6.8(а,б),

6.4(е-и)

11.02

122

Простейшие логарифмические уравнения

1

ИНМ

Знать методы решения уравнений.

Уметь решать простейшие логарифмические уравнения

6.14(б,в),

6.15(б,в),

6.13(б,в)

12.02

123

Уравнения, сводящиеся простейшим заменой неизвестного

1

1

ИНМ

Знать методы решения уравнений.

Уметь решать показательные уравнения введением нового неизвестного

6.21(д,е),

6.19(б,в)

13.02

124

Решение заданий

СР

Уметь решать логарифмические уравнения введением нового неизвестного

6.20, п.6.3

13.02

125

Простейшие показательные неравенства

1

1

ИНМ

Знать правила решения неравенств.

Уметь решать простейшие показательные неравенства

6.32(г,д,е),

6.34

14.02

126

Решение заданий

СР

Уметь решать простейшие показательные уравнения и неравенства

6.35,

6.32(г,д,е)

15.02

127

Простейшие логарифмические неравенства

1

1

ИНМ

Знать правила решения неравенств.

Уметь решать простейшие логарифмические неравенства

6.47(а,б,в),

6.48

18.02

128

Свойства неравенств

ЗМ

Знать правила решения неравенств.

6.51(б,в,г,д),

6.52(б,в,г,д)

19.02

129

Неравенства, сводящиеся к простейшим заменой неизвестного

1

ИНМ

Знать способы решения показательных и логарифмических неравенств

6.54,

 п.6.6 изучить

20.02

130

Применение неравенств

1

СР

Уметь классифицировать неравенства, решать неравенства рациональным способом, выполнять учебные действия в умственной форме.

6.55,

стр.187-192

20.02

131

Решение  задач

1

ЗМ

Уметь решать логарифмические уравнения и неравенства

6.62(б,в,г),

6.56

21.02

132

Контрольная работа№10 по теме «Показательные и логарифмические уравнения и неравенства»

1

КР

Уметь применять полученные знания при выполнении заданий

Параграф 6

22.02

Синус, косинус угла (7 часов)

133

Анализ контрольной работы

Понятие угла

1

РнО ИНМ

Уметь: отмечать на единичной окружности точки, соответствующие углам; определять значения «табличных» углов.

П.7.1,7.6,7.13

25.02

134

Радианная мера угла

1

ИНМ

Знать о радианной мере угла

7.2, 7.21,7.22

26.02

135

Определение синуса и косинуса угла

1

ИНМ

Знать: понятия синуса и косинуса произвольного угла

7.45, 7.46

27.02

136

Основные формулы для sin a и cos a

1

1

СР

Знать основное тригонометрическое тождество, формулы приведения.

7.57,7.58

27.02

137

Решение заданий

ЗМ

Иметь представление о синусе и косинусе числа.

Уметь проводить преобразования тригонометрических выражений

7.64,7.67

28.02

138

Арксинус

1

ИНМ

Знать определение арксинуса угла

Уметь определять арксинус угла

7.83(а-в, з-м),

7.82(г.д,е)

1.03

139

Арккосинус

1

ИНМ

Знать определение арккосинус угла; примеры использования арксинуса и арккосинуса и формулы для них.

Уметь определять арккосинус угла

7.102,

7.97,

7.103

4.03

Тангенс и котангенс угла (8 часов)

140

Определение тангенса и котангенса угла

1

ИНМ

Знать определения тангенса и котангенса угла, оси тангенсов и котангенсов

8.5,8.11,8.14

5.03

141

Основные формулы для tg a и ctg a

1

1

СР

Знать основные формулы для тангенса и котангенса

8.19,8.22(в-з)

6.03

142

Решение  задач

ЗМ

Иметь представление о тангенсе и котангенсе числа

Уметь проводить преобразования выражений, включающих тригонометрические функции

8.22(вз) , пов-

торить

6.03

143

Арктангенс

1

ИНМ

Знать понятие арктангенса угла

Уметь находить арктангенс угла

8.33, 8.35

7.03

144

Арккотангенс

1

ИНМ

Знать понятие арккотангенса угла.

Уметь находить арккотангенс угла.

8.51

8.03

145

Решение  примеров

1

ЗМ

Знать примеры использования арктангенса и арккотангенса и формулы для них.

Уметь проводить преобразования выражений, включающих тригонометрические функции

8.45(а,б,и,к), 8.46(а,б,и,к)

11.03

146

Контрольная работа№11 по теме Тригонометрические  формулы

1

КР

Уметь применять полученные знания при выполнении заданий

Повторить параграф 7,8

12.03

147

Анализ контрольной работы

1

РнО

Уметь выполнять работу над ошибками, допущенными в контрольной работе

9.4, п.9 изучить

13.03

Формулы сложения (11 часов)

148

Косинус разности

1

ИНМ

Знать формулы косинуса разности двух углов.

Уметь применять формулы  косинуса разности двух углов.

9.8 ,9.13

13.03

149

Косинус суммы двух углов

1

ИНМ

Знать формулы косинуса суммы двух углов.

Уметь применять формулы  косинуса суммы двух углов.

9.17, повторить формулы

14.03

150

Формулы для дополнительных углов

1

ИНМ

Знать формулы приведения

Уметь применять формулы приведения

9.20(б,г,е),

9.21(б,г,е)

15.03

151

Синус суммы  и синус разности двух углов

1

ИНМ

Знать формулы синуса суммы и синуса разности двух углов.

Уметь применять формулы синуса суммы и синуса разности двух углов.

9.26,

9.30

18.03

152

Синус суммы  и  синус разности двух углов

1

СР

Знать формулы синуса суммы и синуса разности двух углов.

Уметь применять формулы синуса суммы и синуса разности двух углов.

9.31,9.33(б,в)

19.03

153

Сумма синусов и косинусов

1

ИНМ

Знать формулы суммы синусов и косинусов.

Уметь выполнять преобразования, используя соответствующие формулы.

П.9.4, №9.39

20.03

154

Разность синусов и косинусов

1

СР

Знать формулы разности синусов и косинусов.

Уметь выполнять преобразования, используя соответствующие формулы.

9.40, 9.42(пись-менно)

20.03

155

Формулы  двойных и половинных углов

1

ИНМ

Знать формулы двойных и половинных углов.

Уметь выполнять преобразования, используя соответствующие формулы.

9.50,

9.55(пись-менно)

21.03

156

Формулы двойных и половинных углов

1

ЗМ

9.62,

9.63

22.03

157

Произведения синусов и косинусов

1

ИНМ

Знать формулы произведения синусов, косинусов и тангенсов.

Уметь доказывать тригонометрические тождества, выполнять преобразования и вычисления, используя соответствующие формулы.

П.9.6,

9.67(г,д),

9.64

1.04

158

Формулы для тангенсов

1

ИНМ

Знать формулы для тангенсов, выражение тригонометрических функций через тангенс половинного аргумента.

Уметь преобразовывать тригонометрические выражения

9.75(б,в), 9.76(б), 9.77(б), 979(б,в)

2.04

Тригонометрические функции числового аргумента (10 часов)

159

Функция y=sinx

1

ИНМ

Знать определение функции y=sinx , свойства функции, периодичность, основной период.

Уметь строить график функции y=sinx, определять промежутки возрастания и убывания, описывать по графику и по формуле поведение и свойства функций.

9.81,9.82, 9.83

3.04

160

Решение задач

1

ЗМ

10.1, 10.8

3.04

161

Функция y=cosx

1

ИНМ

Знать определение функции y= cosx, свойства функции.

Уметь строить график функции y=cosx,  определять промежутки возрастания и убывания, описывать по графику и по формуле поведение и свойства функций

10.17,10.18

4.04

162

Решение задач

1

СР

10.13, 10.15

5.04

163

Функция y=tgx

1

ИНМ

Знать определение функции y= tgx, свойства функции.

Уметь строить график функции y=tgx,  описывать по графику и по формуле поведение и свойства функций

ДМ стр.119

3 вариант

8.04

164

Решение задач

1

СР

10.25, 10.23

9.04

165

Функция y=ctgx

ДЗ

Знать определение функции y=ctg x, свойства функции.

Уметь строить график функции y=ctgx,  описывать по графику и по формуле поведение и свойства функций

10.29, 10.31

10.04

166

Решение задач

1

ГР

Подготовиться к контр.работе,

10.30

10.04

167

Контрольная работа№12 по теме «Тригонометрические функции числового аргумента»

1

КР

Уметь применять полученные знания при выполнении заданий

Повторить параграф 10

11.04

168

Анализ контрольной работы

1

РнО

Уметь выполнять работу над ошибками, допущенными в контрольной работе

ДМ стр.145

 № 3, 4, 5

12.04

Тригонометрические уравнения и неравенства (14 часов)

169

Простейшие тригонометрические уравнения

1

ИНМ

Знать, какие уравнения называют простейшими тригонометрическими.

Уметь решать простейшие тригонометрические уравнения

П. 11.1 № 11.4(г,д), 11.3(г-и)

15.04

170

Решение задач на Простейшие тригонометрические уравнения

1

ЗМ

11.7, 11.6

16.04

171

Уравнения, сводящиеся к простейшей заменой неизвестного

1

ИНМ

Знать приёмы решения тригонометрических уравнений.

П.11.2

11.10(в,д,к), 11.11 (б)

17.04

172

Решение задач на Уравнения, сводящиеся к простейшей заменой неизвестного

1

ЗМ

Уметь применять метод замены неизвестного.

11.12(в,д,к), 11.13(е,и,к)

17.04

173

Применение основных тригонометрических формул для решения уравнений

1

ИНМ

Знать: основное тригонометрическое тождество, формулы сложения, приёмы понижения кратности угла и понижения степени уравнения.

П.11.3 №11.16(в,г),

11.18

18.04

174

Решение задач на Применение основных тригонометрических формул для решения уравнений

1

ЗМ

Уметь применять основные тригонометрические формулы для решения уравнений.

11.20, 11.22

19.04

175

Однородные уравнения

1

ИНМ

Знать, какое уравнение называют однородным тригонометрическим. Уметь решать однородные тригонометрические уравнения.

П.11.4

№11.27,11.29

22.04

176

Простейшие неравенства для синуса и косинуса

1

ИНМ

Знать способы решения тригонометрических неравенств.

П.11.5

№11.36(е,ж,к),

11.35

23.04

177

Простейшие неравенства для тангенса и котангенса

1

ЗМ

Уметь решать неравенства, опираясь на графики, на единичную окружность.

П.11.6

11.40, 11.42

24.04

178

Неравенства, сводящиеся к простейшим заменой неизвестного

1

ИНМ

Уметь решать неравенства, сводящиеся к простейшим, заменой неизвестного.

П.11.7

11.45(б,г,е,з),

11.47(б,г,е,з)

24.04

179

Введение вспомогательного угла

1

ИНМ

Знать, как вводится вспомогательный угол, способы решения однородного тригонометрического уравнения и неравенства.

Уметь решать неравенства введением вспомогательного угла.

П.11.8

11.50, 11.53

25.04

180

Решение  примеров

1

ЗМ

Уметь решать неравенства заменой неизвестного t= sinx+ cosx

П.11.9 11.57(б),11.58

26.04

181

Контрольная работа№13 по теме «Тригономет-рические уравнения и неравенства»

1

КР

Уметь применять полученные знания при выполнении заданий

Повторить параграф 11

29.04

182

Анализ контрольной работы

1

РнО

Уметь выполнять работу над ошибками, допущенными в контрольной работе

Стр.330-332, 11.51

30.04

Элементы теории вероятности (9 часов)

183

Элементарные и сложные события. Понятие вероятности события

1

ИНМ

Знать, что называют вероятностью события.

Уметь анализировать, определять тип события (единственно возможные, равновозможные, достоверные, невозможные, несовместные события. Элементарные и сложные события.)

П.12.1

12.8, 12.15

1.05

184

Свойства вероятности. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события.

1

ИНМ

Уметь вычислять вероятность события.

П.12.2

12.26, 12.27

1.05

185

Табличное и графическое представление данных. Числовые характеристики рядов данных

1

ЗМ

Знать числовые характеристики рядов данных.

П.13.1

2.05

186

Относительная частота событий

1

ЗМ

Иметь представление о вероятности и статистической частоте наступления события.

Уметь вычислять относительную частоту события.  

13.3, 13.2

3.05

187

Независимые события. Вероятность и статистическая частота наступления события.

1

ИНМ

Знать какие события называются независимыми

Уметь учитывать правило в контроле и планировании способа решения

П. 13.2

13.6, 13.7

6.05

188

Формула Бернулли

1

ИНМ

Знать формулу Бернулли, закон больших чисел.

Параграф 14. 14.15

7.05

189

Решение задач

1

ЗМ

Уметь применять формулу Бернулли при решении задач

14.8, 14.9

8.05

190

Решение задач по теме «Элементы теории вероятности»

1

КР

Уметь применять полученные знания при выполнении заданий

Повторить параграф 14

8.05

191

Обобщающий урок

1

РнО

Уметь выполнять работу над ошибками, допущенными в контрольной работе

Стр.359-361

9.05

Геометрия на плоскости (8ч)

192

Вычисление углов с вершиной внутри и вне круга, угла между хордой и касательной.

1

ИНМ

Уметь вычислять  угол с вершиной внутри и вне круга, угол между хордой и касательной.

П.85, 87

818, 820

10.05

193

 Теорема о произведении отрезков хорд. Теорема о касательной и секущей.

1

ИНМ

Знать теорему о сумме квадратов сторон и диагоналей параллелограмма.

Уметь применять теорему о произведении отрезков хорд, теорему о касательной и секущей при решении задач

П.86  825, 824

13.05

194

Вписанные и описанные многоугольники.

1

ЗМ

Знать свойства и признаки вписанных и описанных многоугольников.

П.88, 89

833, 834

14.05

195

Свойство биссектрисы угла треугольника.

1

ИНМ

Уметь вычислять биссектрису, медиану, высоту, радиусы вписанной и описанной окружностей.

П.90,91

839, 840

15.05

196

Формулы  площади треугольника

1

ЗМ

Знать формулу Герона, выражение площади треугольника через радиус вписанной и описанной окружностей.

Уметь решать задачи на нахождение площади треугольника

П.92, 93,94

843,845

15.05

197

Геометрические места точек. Эллипс, гипербола, парабола

1

ИНМ

Знать теоремы Чевы и Менелая.

 Уметь решать  задачи с помощью геометрического места точек

П.95,96

855, 858

16.05

198

Контрольная работа№14 за четверть

1

П.97, 98,99

867, 869

17.05

199

Решение задач с помощью геометрических преобразований. Неразрешимость классических задач на построение.

1

ИНМ

Уметь изображать геометрические фигуры, решать геометрические задачи, опираясь на изученные свойства планиметрии, применяя алгебраический и тригонометрический аппарат.

Читать ОК

20.05

Повторение курса 10 класса (10часов)

200

Рациональные уравнения и неравенства. Степень положительного числа

2

ЗМ

Уметь применять полученные знания при выполнении заданий

Стр. 367 №35,

38 ,59

21.05

201

Показательные и логарифмические, тригонометрические уравнения и неравенства

ЗМ

31, 32

22.05

202

Итоговая контрольная работа

1

ЗМ

Уметь применять полученные знания при выполнении заданий

155, 169,200

22.05

203

Анализ контрольной работы

1

ЗМ

Уметь выполнять работу над ошибками, допущенными в контрольной работе

185, 161

23.05

204

Обобщающий урок

1

КР

Уметь применять полученные знания при выполнении заданий

131,125

24.05

205

Повторение материала по алгебре

1

РнО

Уметь применять полученные знания при выполнении заданий

99, 100

27.05

206

Повторение материала по геометрии

1

ЗМ

Уметь решать геометрические задачи, опираясь на изученные свойства планиметрии, стереометрии, применяя алгебраический и тригонометрический аппарат.

Подготовиться к тесту

28.05

207

Решение задач ЕГЭ

Тест

Умение работать с КИМ

Вариант ЕГЭ

29.05

208

Решение задач ЕГЭ

1

Тест

Умение работать с КИМ

Вариант ЕГЭ

29.05

209

Решение задач ЕГЭ

1

ЗМ

Уметь применять полученные знания при выполнении заданий

Вариант ЕГЭ

30.05

210

Итоговый урок

1

беседа

Систематизация и обобщение знаний

31.05

                                 

ЛИТЕРАТУРА

        Учебно-методическая литература для учеников

  • Алгебра и начала анализа: учебник для 10 класса общеобразовательных учреждений /С.М. Никольский и др.- М.: Просвещение, 2011г.
  • Алгебра и начала математического анализа. Дидактические материалы 10 класс: базовый и профильный уровни/ М.К. Потапов, А.В. Шевкин – М.: Просвещение, 2011.
  • Геометрия: учебник для 10-11 кл. общеобразовательных учреждений (базовый и профильный уровень) / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Л.С. Киселева, Э.Г. Позняк – М.: Просвещение, 2010.

                              Учебно-методическая литература для учителя

  • Алгебра и начала анализа:  10-11 класс/  А.П. Ершова, В.В. Голобородько – Москва 2007.
  • Видеман Т.Н. Алгебра. 10-11 классы: рабочие программы по учебникам С.М. Никольского, М.К.Потапова, Н.Н. Решетникова,      А.В. Шевкина. Базовый и профильный уровни. – Волгоград: Учитель, 2011. – 83 с.
  • Геометрия: 10 класс/ А.П. Ершова, В.В. Голобородько – Москва 2007.
  • Лысенко Ф.Ф. Математика. Подготовка к ЕГЭ-2011. Вступительные испытания. Ростов- на- Дону: Легион, 2010.
  • Повторение и контроль знаний Математика: 9-11 класс, подготовка к ГИА и ЕГЭ. Н.И. Гданский, А.В. Карпов – Планета, 2010.

Учебно-методическая литература для подготовки к ЕГЭ

  • Математика ЕГЭ типовые тестовые задания / А.Л. Семенова, И.В. Ященко – М.: Экзамен, 2011-2012.
  • Математика ЕГЭ 2011 практикум реальные тесты/ Л.Д. Лаппо, М.А. Попов – М.: Экзамен, 2011-2012.
  • Математика ЕГЭ 2012 типовые экзаменационные варианты (30 вариантов)/ А.Л. Семенова, И.В. Ященко – М.: Экзамен, 2012
  • Подготовка к ЕГЭ по математике / И.В. Ященко, С.А. Шестаков, П.И. Захаров – М.:МЦНМО, 2011-2012.
  • ЕГЭ 2010 математика, задача С2 Геометрия, Стереометрия/ А.Л. Семенова, И.В. Ященко – М.:МЦНМО, 2011-2012.
  • Математика Подготовка к ЕГЭ – 2012 / Ф.Ф. Лысенко, С.Ю. Кулабухова – Ростов-на-Дону: Легион, 2011
  • Отличник ЕГЭ Математика решение сложных задач / В.С. Панферов, И.Н. Сергеев – М.: Интеллект Центр, 2011.

Дополнительная  литература

Алгебра и начала математического анализа. Дидактические материалы 10 класс: базовый и профильный уровни/ М.К. Потапов, А.В. Шевкин – М.: Просвещение, 2011.Программа общеобразовательных учреждений Алгебра и начала математического анализа 10-11 классы. Составитель: Т.А. Бурмистрова – М., Просвещение, 2009

Программа общеобразовательных учреждений Геометрия 10-11 классы. Составитель: Т.А. Бурмистрова – М., Просвещение, 2010

Сборник нормативных документов для образовательных учреждений РФ, реализующих программы общего образования/ Сост. Э.Д.Днепров, А.Г.Аркадьев. – М.: Дрофа, 2007


По теме: методические разработки, презентации и конспекты

Рабочая программа 8 класс.Никольский.

Рабочая программа 8 класс.Никольский....

Рабочая программа математика 5 класс С.Никольский 210 часов

Рабочая программа по математике составлена на основе федерального государственного образовательного стандарта, учебного плана, примерной программы основного общего образования по математике с уч...

Рабочая программа Математика 6 класс учебник С.М.Никольского

Рабочая программа и календарное планирование на 2016-2017 учебный год математика 6 класс...

Рабочая программа 5 класс Никольский

Рабочая программа учебного предмета «Математика» составлена на основе таких нормативноправовых документов и материалов, как: Федеральный компонент государственного стандарта среднего (полн...

Рабочая программа математика 5 класс (учебник Никольский С.М.)

Рабочая программа математика 5 класс (учебник Никольский С.М.) с УУД. Содержит календарно-тематическое планирование....

Рабочая программа 5 класс (Никольский)

Эта программа является основой для организации работы учителя, ведущего преподавание по указанному учебно-методическому комплекту.Программа  задает содержание и структуру курса, последовате...