Секреты устного счета
занимательные факты по алгебре на тему

Алдошина Ирина Львовна

Как быстро вычислить устно.

Скачать:

ВложениеРазмер
Microsoft Office document icon sekrety_ustnogo_scheta.doc44.5 КБ

Предварительный просмотр:

Секреты быстрого умножения и деления.

1. Умножение и деление на 5, 50, 500 и т. д.

Умножение на 5, 50, 500 и т. д. заменяется умножением на 10, 100,1000 и т. д. с последующим делением на 2 полученного произведения (или делением на 2 и умножением на 10, 100, 1000 и т. д.). (50 = 100: 2 и т.д.)

            54*5=(54*10):2=540:2=270    (54*5 = (54:2)*10= 270).

Чтобы  число разделить на 5,50, 500 и т. д., надо это число разделить на  10,100,1000 и т. д. и умножить на 2.

10800 : 50 = 10800:100*2 =216

10800 : 50 = 10800*2:100 =216

2. Умножение и деление на  25, 250, 2500 и т. д.  

Умножение на 25, 250, 2500 и т. д. заменяется умножением на 100,1000,10000 и т. д. и полученный результат разделить на 4. (25 = 100: 4)

542*25=(542*100):4=13550                        (248*25=248: 4*100 = 6200)

(если число делится на 4, то выполнение умножения не занимает времени, любой ученик может выполнить).

        Чтобы выполнить деление числа на 25, 25,250,2500 и т. д. это число надо разделить  на 100,1000,10000 и т.д. и умножить на 4

        31200: 25 = 31200:100*4 = 1248.

3.  Умножение и деление на  125, 1250, 12500 и т. д.

 Умножение на 125, 1250 и т. д. заменяется умножением на 1000, 10000 и т. д. и полученное произведение нужно делить на 8. (125 = 1000: 8)

72*125=72*1000:8=9000

Если число делится на 8, то сначала выполним деление на 8 , а потом умножение на 1000,10000 и т. д.

48*125 = 48:8*1000 = 6000

Чтобы разделить число на 125, 1250 и т.д., надо это число разделить на 1000, 10000 и т. д. и умножить на 8.

7000: 125 = 7000:1000*8 = 56.

4. Умножение и деление на  75, 750 и т. д.

Чтобы число умножить на 75, 750и т. д. надо это число разделить на 4 и умножить на 300, 3000 и т.д. (75 = 300: 4)

48* 75 = 48:4*300 = 3600

Чтобы число разделить на 75,750 и т. д. надо это число разделить на 300, 3000 и т.д. и умножить на 4

7200: 75 = 7200: 300*4 = 96.

5.Умножение на 15, 150.

При умножении на 15, если число нечетное, умножают его на 10 и прибавляют половину полученного произведения:

23х15=23х(10+5)=230+115=345;

если же число четное, то поступаем еще проще — к числу прибавляем его половину и результат умножаем на 10:

18х15=(18+9)х10=27х10=270.

При умножении числа на 150 пользуемся тем же приемом и умножаем результат на 10, т.к.150=15х10: 

24х150=((24+12)х10)х10=(36х10)х10=3600.

 Точно так же быстро умножить двузначное число (особенно четное) на двузначное, оканчивающиеся на 5:

24*35 = 24*(30 +5) = 24*30+24:2*10 = 720+120=840.

6. Перемножение двузначных чисел, меньших, чем 20.

 К одному из чисел надо прибавить количество единиц другого, эту сумму умножить на 10 и прибавить к ней произведение единиц данных чисел:

18х16=(18+6)х10+8х6= 240+48=288.  

 Описанным способом можно умножать двузначные числа, меньшие 20, а также числа, в которых одинаковое количество десятков: 23х24 = (23+4)х20+4х6=27х20+12=540+12=562.

Объяснение: 

(10+a)*(10+b) = 100 + 10a + 10b + a*b = 10*(10+a+b) + a*b = 10*((10+a)+b) + a*b .

7.Умножение двузначного числа на 101.

Пожалуй, самое простое правило: припишите ваше число к самому себе. Умножение закончено.
Пример:

57 * 101 = 5757      57 --> 5757

Объяснение: (10a+b)*101 = 1010a + 101b = 1000a + 100b + 10a + b
Аналогично производят умножение трехзначных чисел на 1001, четырехзначных - на 10001 и т.п.

8. Умножение двузначного числа на 11.

Следует "раздвинуть" цифры числа, умножаемого на 11, и в образовавшийся промежуток вписать сумму этих цифр, причем если эта сумма больше 9, то, как при обычном сложении, следует единицу перенести в старший разряд.

Пример:
34 * 11 = 374, так как 3 + 4 = 7, семерку помещаем между тройкой и четверкой
68 * 11 = 748, так как 6 + 8 = 14, четверку помещаем между семеркой (шестерка плюс перенесенная единица) и восьмеркой

9. Умножение на 22, 33, …, 99.

Чтобы двузначное число умножить 22,33, …,99, надо этот множитель представить в виде произведения однозначного числа на 11. Выполнить умножение сначала на однозначное число, а потом на 11:

15 *33= 15*3*11=45*11=495.

10. Умножение двузначных чисел на 111.

         Сначала возьмём множимым такое двузначное число, сумма цифр которого меньше 10. Поясним на числовых примерах:

45*111.

Так как 111=100+10+1, то 45*111=45*(100+10+1). При умножении двузначного числа, сумма цифр которого меньше 10, на 111, надо в середину между цифрами вставить два раза сумму цифр (т.е. чисел, ими изображаемых) его десятков и единиц 4+5=9. 4500+450+45=4995. Следовательно, 45*111=4995. Когда сумма цифр двузначного множимого больше или равна 10, например 68*11, надо сложить цифры множимого (6+8) и в середину между цифрами 6 и 8 вставить 2 раза единицы полученной суммы. Наконец, к составленному числу 6448 прибавить 1100. Следовательно, 68*111=7548.

11. Умножение на 37.

При умножении числа на 37, если данное число кратно 3,его делят на 3 и умножают на 111.

27*37=(27:3)*(37*3)=9*111=999

Если же данное число не кратно 3, то из произведения вычитают 37 или к произведению прибавляют 37.

23*37=(24-1)*37=(24:3)*(37*3)-37=888-37=851.

12. Возведение в квадрат любого двузначного числа.

Если запомнить квадраты всех чисел от 1 до 25, то легко найти и квадрат любого двузначного числа, превышающего 25.

Для того чтобы найти квадрат любого двузначного числа, надо разность между этим числом и 25 умножить на 100 и к получившемуся произведению прибавить квадрат дополнения данного числа до 50 или квадрат избытка его над 50-ю.

Рассмотрим пример:

372=12*100+132=1200+169=1369

(М–25)*100+ (50-M) 2=100M-2500+2500–100M+M2=M2 .

13. Умножение чисел, близких к 100.

  При увеличении (уменьшении) одного из множителей на несколько единиц умножаем полученное целое число и прибавленные (отнятые) единицы на другой множитель и  из первого произведения вычитаем второе произведение (полученные произведения складываем)

98∙8=(100-2) ∙8=100∙8-2∙8=800-16=784.

Данный прием представления одного из сомножителей в виде разности позволяет легко умножать на 9, 99, 999.

Для этого достаточно умножить число на 10 (100, 1000) и из полученного  целого числа вычесть число, которое умножали: 154х9=154х10-154=1540-154=1386.

Но еще проще ознакомить детей с правилом — «чтобы умножить число на 9 (99, 999)достаточно вычесть из этого числа число его десятков (сотен, тысяч), увеличенное на единицу, и к полученной разности приписать дополнение его цифры единиц до 10 (дополнение до 100 (1000) числа, образованного двумя (тремя) последними цифрами этого числа):

154х9=(154-16)х10+(10-4)=138х10+6=1380+6=1386

14. Умножение двузначных чисел, у которых сумма единиц равна 10.

Пусть даны два двузначных числа, у которых сумма равна 10:

М=10m + n,  K=10a + 10 – n. Составим их произведение.

M * K= (10m+n) * (10a + 10 – n) =100am + 100m – 10mn + 10an + +10n – n2 = m * (a + 1) * 100 + n * (10a + 10 – n) – 10mn = (10m) * * (10 * (a + 1)) + n * (K – 10m).

Рассмотрим несколько примеров:

17 * 23= 10 * 30 + 7 * 13= 300 + 91= 391;

33 * 67= 30 * 70 + 3 * 37= 2100 + 111= 2211.

15. Возведение в квадрат числа, оканчивающееся на 5.

Число десятков умножаем на следующее число десятков и прибавляем 25.

15*15 = 225 = 10*20+ 25   ( или 1*2 и приписываем справа 25)

35*35 =30*40 +25= 1225                (3*4 и приписываем справа 25)

65*65 = 60*70+25=4225                (6*7 и приписываем справа 25)


По теме: методические разработки, презентации и конспекты

Устный счет по теме "Десятичные дроби", 5 класс

Устные упражнения используются как подготовительная ступень при объяснении нового материала, как иллюстрация изучаемых правил, а также для закрепления и повторения изученного. В устном счете развивает...

Презентация устного счета по числовой окружности, 10 класс

Устный счет по числовой окружности для 10 класса...

Методическое пособие "Повышение вычислительной культуры(устный счет), 5-6 класс"

- Устные упражнения активизируют мыслительную деятельность учащихся, развивают внимание, наблюдательность, оперативную память, речь, быстроту реакции, повышают интерес к изучаемому материалу. Они дают...

Устный счет по теме "Квадрат и куб числа"

Вашему вниманию предлагаю презентацию: устные упражнения по теме"Квадрат и куб числа"....

Устный счет на уроках математики в 5-6 классах

Одна из основных задач школьного курса математики - формирование у учащихся сознательных и прочных вычислительных навыков. Основа вычислительной культуры закладывается в первые 5-6 лет обучения....

Секреты быстрого устного счета

В данной презентации представлены наиболее интересные и доступные приемы быстрого устного счета для 5 класса. Материал изложен в простой форме с примерами....

«Секреты устного счета»

В презентации представленыприемы устного счета.  Как быстро научиться считать в уме? Данный материал может быть исползован в 5-11классах              ...