Урок по алгебре "Решение систем линейных уравнений способом сложения" + презентация
методическая разработка по алгебре (7 класс) по теме

Пенькова Ирина Александровна

Материал содержит конспект урока по алгебре 7 класса и презентации к данному уроку. А также интерактивный материал из "Коллекции учебных материалов".

Скачать:

ВложениеРазмер
Файл reshenie_sistem_uravneniy_sposobom_slozheniya.rar2.1 МБ

Предварительный просмотр:

План - конспект урока по алгебре в 7 классе

по теме «Решение систем линейных уравнений способом сложения»

Программное обеспечение:

  1. УМК: Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Мешков, С. Б. Суворова. Под редакцией С.А. Теляковского.-М.: Просвещение, 2003. «Алгебра 7 класс»

Тема урока «Решение систем линейных уравнений способом сложения»

(урок обобщения и систематизации знаний).

Цели урока.

 1) Образовательные: актуализировать опорные знания и способы действий при решении систем  уравнений, добиваться осмысленного применения способа сложения при  выполнении упражнений по образцу и в измененной ситуации;

2) Развивающие: развивать логическое мышление учащихся, вырабатывать умение сравнивать, делать выводы, делать самопроверку;

3) Воспитательные: воспитание познавательной активности, чувства ответственности, внимательности, уверенности  в себе, самостоятельности в работе.

Оборудование: учебники, компьютеры, проектор, презентации.

Структура урока: 

1) Организационный момент, вступительная беседа учителя-2 мин

2) Устные упражнения-8 мин.                      

3) Актуализация опорных знаний, творческая работа учащихся-25 мин.

4) Рефлексия, итог урока-3 мин.

5) Домашнее задание-2 мин.

Ход урока.

1. Организационный момент.

- Здравствуйте, ребята! Тема нашего урока: « Решение систем линейных уравнений способом сложения». Мы сегодня на уроке продолжим решать системы способом сложения в заданиях, которые есть в компьютере и более сложные системы уравнений со скобками и дробями, которые подготовили ребята в своих презентациях. У вас будет возможность проверить себя, как вы умеете применять способ сложения при выполнении различных заданий.

2. Устные упражнения.

-Мы с вами в течение нескольких уроков решали системы уравнений различными способами. Прежде всего давайте вспомним, что называется решением системы уравнений с 2-мя переменными?

( Решением системных уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство)

-А что значит решить систему уравнений?

( Решить систему уравнений- значит найти все её решения или доказать , что решений нет) .

-Какие способы решения систем вы знаете?

( Графический, способ подстановки, способ сложения).

Приложение № 1.Слайд №2.

Пара чисел (...;0);(3;…);(4;…) является решением уравнением 2х – у = 6

Найти неизвестное число в паре.

 ((3;0);(3;0);(4;2))

Слайд №3.

В какой точке пересекаются прямые: а) х – у =3   и у = 3;

 б) 3х+у=8 и у=х?

  (   а) (6;3)    б) (2;2)  )  

Слайд №4

Решите систему уравнений способом сложения

    х +у=11

    2х-у=4   (5;6)  

Запишите систему уравнений с двумя переменными. (Слайд №5)  

     3x+y=8 |*2

     5x-2y=6

-В чем состоит способ сложения?                                                        

(1. Умножаем почленно уравнения системы на такие множители, чтобы коэффициенты при одной из переменных стали противоположными числами.

  6x+2y=16

  5x-2y=6

2. Складываем почленно левые и правые части уравнений.

3. Решаем уравнение с одной переменной.

11x=22

x=2

4.Находим соответствующее значение второй переменной.)

3*2+y=8

y=2                (2;2)

3. Актуализация опорных знаний. Творческая работа учащихся. 

- Сейчас учащиеся I варианта садятся за компьютеры и выполняют задания № 1, расположенные в разделе «Практика» и «Контроль».

1)Составить уравнение вида

   Y=kx+b, график которого

   проходит через точки A(4;1) и

B(3;-5).

1=4k+b

-5=3k+b

 

4k+b=1

 3k+b= -5/ * (-1)


 4k+b=1

          -3k- b= 5


            k=6

            4*6+b=1

            b= -23

           y= 6x – 23


                     


  1.  10x – 3y = 5

-6x – 3y = -27 /* ( -2 )

   


         10x – 3y = 5

          6x + 3y = 27

          16x = 32

               x = 2

              10*2 – 3y = 5

              y = 5

     Ответ: (2;5)

В это время учащиеся II варианта выполняют задания из презентации, подготовленной группой учащихся дома, исходя из индивидуальных способностей учащихся. Один учащийся выполняет на закрытой доске более сложное задание № 2.


Приложение № 2.

Презентация №3.

  1. 7а+4b=90 / *3        

5a-6b=20 / *2


21a+12b=270         70+4b=90

10a-12b=40             4b=20

                                  b=5

31a=310

a=10

Ответ: (10;5)

     

2)          / *15            

           / *30            75n= -225

                                                   n= -3

                                               6m -15=15

        6m+5n=15                          6m=30    

         3m-35n=120 /* (-2)               m=5

       

        6m+5n=15

       -6m+70n= -240          Ответ: (5; -3)

* Физминутка.

- Учащиеся I варианта возвращаются за парты и выполняют задания из презентации № 1 и №2, которую ребята приготовили дома для вас.

Учащиеся I варианта выполняют задания из презентации, исходя из индивидуальных способностей. Один учащийся выполняет на закрытой доске более сложное задание № 2.

Приложение № 3.

Презентация №1, №2.

  1)   10х-9у=47 / * (-3)

        15х+21у=1,5 / *2


     -30х+27у= -141

       30х+42у=3              10х+18=47

                                         10х=29

        69у= -138                  х=2,9

          у= -2                   Ответ: (2,9;-2)

 

2)    5(х+2у)-3=3х+5                

       4(х-4у)-50= -33у

       

       5х+10у-3=3х+5

       4х-12у-50=-33у


       2х+10у=8 / * (-2)

       4х+21у=50  


      -4х-20у= -16

       4х+21у=50

         

         у=34

        2х+340=8

         х= -332 : 2

         х= -166

         Ответ: (-166; 34)  

 1)Составить уравнение вида

   y=kx+b, график которого

   проходит через точки A(8;-1) и

B(-4;17).

       - 1=8k+b

       17=- 4k+b

 

8k+b= -1

        -4k+b=17/ * 2


 8k+b= -1

           - 8k+2b= 34


            b=11

            8k+11= -1

            k= -1,5

           y= -1,5x +11

2)     5x + 4y = -22

 5x – 2y = -4 /* ( -1 )


              5x + 4y = -22

              -5x + 2y = 4

           

              6y = -18

              y = -3

              5x +4*(-3) = -22

              x = -2

     Ответ: (-2;-3)

          

4.Рефлексия. Итог урока.

-Закончите предложение: (Слайд №6)

  1. Сегодня на уроке мне понравилось…….
  2. Сегодня на уроке я узнал………
  3. Сегодня на уроке я научился……..

- Какие виды работы мы использовали?

- Как вы оцените работу ребят, подготовивших дома презентации?

  1. Повторение алгоритма решения линейных уравнений способом сложения.

Выставление оценок.

     5. Домашнее задание.

      № 1150 (в,г), 1154 ( выполняем также, как выполняли задание №1 на компьютере ).

        

        


По теме: методические разработки, презентации и конспекты

Методическая разработка урока алгебры в 7 классе "Различные способы решения систем линейных уравнений" способы решения систем уравнений

Урок алгебры в 7 классе направлен на обобщение и систематизацию различных способов решения систем уравнений: метода сравнения, сложения, подстановки, графического метода, метода Крамера, выбора рацион...

Решение систем линейных уравнений способом подстановки и алгебраического сложения

Методическая разработка коррекционно-развивающего урока алгебры в 7 классе по теме "Решение систем  уравнений способом подстановки и алгебраического сложения". Тип урока: закрепление знаний и уме...

УРОК АЛГЕБРЫ В 7 КЛАССЕ ПО ТЕМЕ «РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ СПОСОБОМ СЛОЖЕНИЯ»

Урок объяснения нового материала с использованием презентации....

Решение систем линейных уравнений методом сложения. Урок 1

Решение систем линейных уравнений методом сложения. Урок 1. Примеры для объяснения новой темы. Решение №1047,1049 (Мерзляк А.Г.)...

Презентация "Решение систем линейных уравнений методом сложения"

Презентация  к уроку "Решение систем линейных уравнений методом сложения"...

Решение систем линейных уравнений способом сложения

Решение систем линейных уравнений способом сложения...