Зачёт по теме: "Алгебраические выражения" подготовка к ГИА
тест по алгебре (9 класс) по теме

Козлова Наталья Борисовна

Тест на 4 варианта.

Скачать:


Предварительный просмотр:

Вариант 2

1. В какое из следующих выражений можно преобразовать произведение (x-2)(x-3)?

1.

2.

3.

4.

2 В выражении 6x^2-4xy вынесли за скобки множитель -2x. В каком случае преобразование выполнено верно?

1.

2.

3.

4.

-2x(3x-2y)

3. Сократите дробь  \frac{5ab}{ab-a^2}.

1.

2.

3.

4.


4.       Упростите выражение  (а + 2)2 – (2 – а)( 2+ а).

  1. 0                 2) 2а2             3) 4а             4) 2а2 + 4а

5. Найдите второй двучлен в разложении на множители квадратного трехчлена: 3x^2+5x-2=3(x+2)(...).

Ответ:_____________________________________

6.      Упростите выражение  : .

  1.         2) -          3) -            4)

7.       При каких значениях а имеет смысл выражение ?

а)  

б)

в) и

г) таких значений нет

8.   Расстояние s (в м), которое пролетает тело при свободном падении, можно приближенно вычислить по формуле s=vt+5t^2, где v — начальная скорость (в м/с), t — время падения (в с). На какой высоте над землей окажется камень, упавший с высоты 150 м, через 4 с после начала падения, если его начальная скорость равна 8 м/с? Ответ дайте в метрах.

Ответ:______________________________________

9.      Найдите значение выражения     при

а)  64

б) -64

в)

г) -

10.       Из формулы z =   выразите x .

           а) x=       б) x =      в)  x =     г) x =

Вариант 3

1. В какое из следующих выражений можно преобразовать произведение (x -1)(x -3)?

1.

(1-x)(x+3)

2.

-(x-1)(x-3)

3.

(1-x)(3-x)

4.

(x+1)(-x+3)

2 В выражении -15x^2+9xy вынесли за скобки множитель 3x. В каком случае преобразование выполнено верно?

1.

3x(-5x-3y)

2.

3x(-5x+3y)

3.

3x(5x-3y)

4.

3x(5x+3y)

3 Сократите дробь \frac{8ab}{ab +4a^2}.

1.

\frac{8}{a}

2.

\frac{8b}{b +4a}

3.

\frac{8}{1 +4a}

4.

\frac{8a}{b +4a}

4.      Упростите выражение (b-2)^2-2b(5b-2).

1.

2.

3.

4.

5. Найдите второй двучлен в разложении на множители квадратного трехчлена: 4x^2 +8x-32=4(x -2)(...).

Ответ:_________________________________

6.      Упростите выражение \frac{3a}{a^2-4b^2}-\frac{3}{a+2b}.

Ответ:_________________________________

7.       При каком из указанных значений х  выражение      не имеет смысла?

        1) х = -4             2) х = -5              3) х = 5                   4) х = -3

8.      Представьте выражение \frac{(c^{-6})^{-3}}{c^{-9}} в виде степени с основанием c.

1.

c^{9}

2.

c^{27}

3.

c^{0}

4.

c^{-2}

9.    Чтобы перевести значение температуры по шкале Цельсия (t^{\circ} C) в шкалу Фаренгейта (t^{\circ} F) пользуются формулой F = 1,8C + 32, где С — градусы Цельсия, F — градусы Фаренгейта. Какая температура по шкале Фаренгейта соответствует 112^{\circ} по шкале Цельсия?

Ответ:_________________________________

10.       Из формулы площади треугольника S=ahа   выразите и вычислите сторону a, если площадь  S=21 и высота ha=7.                                              2

Ответ:_________________________________

Вариант 4

1. В какое из следующих выражений можно преобразовать произведение (x +3)(x -5)?

1.

(-3-x)(x+5)

2.

(x-3)(-x+5)

3.

(-3-x)(5-x)

4.

-(x+3)(x-5)

2 В выражении 6x^2+15xy вынесли за скобки множитель 3x. В каком случае преобразование выполнено верно?

1.

3x(2x-5y)

2.

3x(-2x-5y)

3.

3x(2x+5y)

4.

3x(-2x+5y)

3. При сокращении дроби  получим:

1) х+у;                   2) ;                  3) ;                   4) ху.     

4.      Преобразуйте в многочлен выражение 5c(4c+2)-(5+c)^2.

Ответ:______________________________

5. Найдите второй двучлен в разложении на множители квадратного трехчлена: 3x^2 +15x+12=3(x +4)(...).

1.    х − 1                                2.  х +1                           3.   х + 7                          4.  х − 7              

6.      Найдите разность \frac{1}{7x}-\frac{11x+y}{7xy}.

Ответ:_______________________________

7.       Соотнесите каждое выражение с его областью определения.

А)             Б)                В)                       Г)

  1. с≠ -3                2) с ≠ -1                  3)  с ≠ -3  и  с ≠ -1       4) с – любое число  

8.    Какой из следующих квадратных трехчленов нельзя разложить на множители?

1.

x^2-3x-4

2.

x^2-9

3.

x^2-2x-3

4.

x^2-2x+2

9.   Вычислите: \frac{3^{-4} \cdot 3^{-9}}{3^{-11}}.

1.

-\frac{1}{9}

2.

9

3.

-9

4.

\frac{1}{9}

10.   Период колебания пружинного маятника (в секундах) находится по приближенной формуле  T=6, где m – масса груза в килограммах, k – коэффициент жесткости пружины. Какова должна быть жесткость пружины, чтобы груз массой 100 г совершал колебательные движения с периодом 0,5 с?

Ответ:_______________________________

Вариант 1

1. В какое из следующих выражений можно преобразовать произведение (x -5)(x +3)?

1.

-(x-5)(x+3)

2.

(5-x)(-3-x)

3.

(5-x)(x-3)

4.

(x+5)(-x-3)

2 В выражении -16x^2-16xy вынесли за скобки множитель 4x. В каком случае преобразование выполнено верно?

1.

4x(4x-4y)

2.

4x(-4x-4y)

3.

4x(4x+4y)

4.

4x(-4x+4y)

3. Сократите дробь \frac{9ab}{ab -4a^2}.

1.

\frac{9b}{b -4a}

2.

\frac{9a}{b -4a}

3.

\frac{9}{1 -4a}

4.

\frac{9}{a}

4.      При упрощении выражения  получим:

1) –7;                 2) –9;             3) ;                4) .      

5. Найдите второй двучлен в разложении на множители квадратного трехчлена: 6x^2 -42x+72=6(x -4)(...).

Ответ:_________________________________

6.      Выполните умножение \frac{11a}{a^2-49b^2}\cdot(ab -7b^2).

Ответ:________________________________

7.      Выберите выражение, которое не имеет смысла при а = 0

1)                            3)  

2)                          4)  .

1)   1                2)    1; 3                 3)   1; 4                               4)   2.

8.     За 45 минут человек прошел 4 км. Какое расстояние он пройдет за t минут, если будет идти с той же скоростью?

  1.               2)           3)               4)

9.    Вычислите .

1).  0,5;                      2).   8;                         3)    16;                        4)   .

10.    Из формулы площади круга  выразите R.

Ответ:____________________________



Предварительный просмотр:

Вариант № 1

  1. Решите уравнение   5−7(3−2х)=−3х+2 .   Ответ:_____________
  2. Решите уравнение  х(х+5)=6.                    Ответ:_____________
  3. Решите уравнение .  Ответ:_____________
  4. Решите уравнение . Ответ:_____________
  5. На координатной плоскости построены графики уравнений и .

 Используя эти графики, решите систему уравнений.

            Ответ:_____________

  1. Найдите систему уравнений, для которой пара чисел (5;-4) не является  решением.

1.         2.             3.         4.

  1. В какой координатной четверти находится точка пересечения прямых и ?

                Варианты ответа

         

1. В I четверти

 

2.

В II четверти

3.

В III четверти

4.

В IV четверти

  1. Окружность, изображенная на рисунке, задана уравнением . Используя этот рисунок, определите, какая из систем уравнений не имеет решений.

Варианты ответа

1.

2.

3.

4.

Вариант № 2

  1. Решите уравнение .  Ответ:_____________
  2. Решите уравнение .  Ответ:_____________
  3. Решите уравнение .  Ответ:_____________
  4. Решите уравнение .  Ответ:_____________
  5. Окружность, изображенная на рисунке, задается уравнением , а прямая – уравнением ух. Решите систему уравнений   х22=10; у=3х

    Ответ:_______________                                          

  1. Найдите систему уравнений, для которой пара чисел (5;-4)  является  решением.

1.         2.             3.         4.

  1. В какой координатной четверти находится точка пересечения прямых и?

                Варианты ответа

         

1. В I четверти

 

2.

В II четверти

3.

В III четверти

4.

В IV четверти

  1. Окружность, изображенная на рисунке, задана уравнением . Используя этот рисунок, определите, какая из систем уравнений не имеет решений.

Варианты ответа

1.

2.

3.

4.


По теме: методические разработки, презентации и конспекты

Обобщающий урок по теме "Алгебраические уравнения. Системы нелинейных уравнений".

Данный урок по алгебре в 9 классе проводится как повторительно-обобщающий при завершении темы «Алгебраические уравнения. Системы нелинейных уравнений». Использование групповой формы работы позволяет у...

Урок по теме "Алгебраическая дробь, сокращение дробей", 7 класс

Урок обобщения, закрепления знаний по данной теме. Приведены презентация и конспект урока....

Тест по теме "Алгебраический способ решения уравнений"

Тест разработан по учебнику "Математика - 6 " авторов Истомина Н.Б. и др. Уровень сложности - повышенный. Для всех учебников и УМК, т.к. компетентностно-ориентирован....

Разноуровневая проверочная работа по теме "Алгебраические дроби" 8 класс

Работа содержит не только разноуровневые задания, но и оценочный лист по теме "Алгебраические дроби" , позволяющий ученику оценить выполнение работы, провести рефлексию, анализ выполненных задани...

Билеты к зачёту по алгебре в 8 классе по теме: "Алгебраические дроби"

Предлагаю 12 билетов в которых включена теория и практика...

Зачет по теме "Алгебраические дроби"

Демонстрационный материал для подготовки к зачету по теме "Алгебраические дроби"...

тест по теме "Алгебраические дроби"

Тест по теме "Алгебраические дроби"  материал для повторения и подготовки к ГИА. Содержит 15 вариантов, 10 - базового уровня, 5 - повышенного. Есть ответы....