Задача Дидоны в курсе средней школы
методическая разработка по алгебре (5 класс) по теме
Одна из древнейших задач по нахождению оптимального решения. Обсуждать её можно с 1 по 11 класс, постепенно усложняя подход к ней.
Скачать:
Вложение | Размер |
---|---|
Izoperimetricheskaya_zadacha_v_shkolnom_kurse_matematiki.docx | 13.13 КБ |
Предварительный просмотр:
Изопериметрическая задача в школьном курсе математики
Столько купили земли и дали ей имя Бирса,
Сколько могли окружить бычьей шкурой.
Вергилий «Энеада»
В жизни постоянно приходится сталкиваться с необходимостью принять наилучшее возможное (оптимальное) решение. Огромное число таких задач возникает в экономике и технике. В математике исследование задач на максимум и минимум началось очень давно – 25 веков назад. Примерно 300 лет назад – в эпоху формирования математического анализа – были созданы общие методы решения задач на экстремум.
Приведенные в эпиграфе строки относятся к событию, произошедшему, если верить преданию, в IXвеке до нашей эры.
Финикийская царевна Дидона, спасаясь от преследований своего брата, отправилась на запад вдоль берегов Средиземного моря искать себе прибежище. Ей приглянулось одно место на берегу нынешнего Тунисского залива. Дидона повела переговоры с местным предводителем Ярбом о продаже земли. Запросила она совсем немного – столько, сколько можно «окружить бычьей шкурой». Дидоне удалось уговорить Ярба. Сделка состоялась, и тогда Дидона изрезала бычью шкуру на мелкие тесемки, связала их воедино и окружила большую территорию, на которой основала крепость, а вблизи от нее – город Карфаген.
За 28 лет работы в школе мне довелось учить детей с первого по одиннадцатый класс. Один из основных моих принципов – пропедевтика и преемственность. Например, решение изопериметрической задачи можно давать на разном уровне в течение всего периода обучения в школе.
Фрагменты уроков.
Начальная школа
С понятием периметра и площади дети знакомятся в 1-2 классах и, как показывает опыт, путают их до 11-го. Задача Дидоны поможет избежать этой ошибки.
Фрагмент 1.
В начале урока учитель рассказывает легенду или демонстрирует мультфильм о Дидоне.
Далее учащиеся получают по кусочку медной проволоки длиной 24 см. В их руках ПЕРИМЕТР (веревка из шкуры быка, длина забора, изгороди).Они должны с помощью проволоки получить замкнутую фигуру наибольшей ПЛОЩАДИ ( пусть это будет прямоугольник) и измерить эту площадь с помощью клетчатого тетрадного листа – посчитать клеточки, в качестве подготовки к ЕГЭ.
Опытным путем получаем фигуру близкую к квадрату. Теперь проверим это с помощью расчетов. Задаем вопрос: Какими могут быть стороны прямоугольника, периметр которого 24 см? На доске выписываются поступающие предложения, а затем находится площадь.
Длина и ширина площадь
5 см и 7см 35 см2
8 см и 4 см 32 см2
3 см и 9 см 27 см2
11см и 1см 11 см2
6см и 6см 36 см2
10 см и 2 см 20см2
Итак, наибольшей площадью из всех прямоугольников данного периметра обладает квадрат. Наше исследование не является доказательством. Сообщаем детям, что гипотеза верна и будет доказана на уроках математики в старших классах. Стоит заметить, что из всех плоских фигур наибольшей площадью при заданном периметре обладает круг, но это уже достаточно сложная задача.
В качестве домашнего задания предлагается провести такое же исследование с другим периметром, например, 36см.
По теме: методические разработки, презентации и конспекты
Вводный тест по литературе за курс средней школы (5-8 кл)
Тест использовался как вводный на уроке литературы 9 класса с целью выявить уровень знаний, познавательные возможности и предпочтения класса...
Вводный тест за курс средней школы (5-8 кл)
Тест использовался в 9 классе на первых уроках с целью выявления уровня знаний, может использоваться как итоговый в 8 классе. Содержит вопросы, касающиеся различных уровней языковой системы...
Методические рекомендации по подготовке учащихся к сдаче государственной итоговой аттестации в формате ЕГЭ за курс средней школы по географии. Раздел: «Природа Земли и человек. Оболочки Земли. Атмосфера»
Единый государственный экзамен имеет целью - определение качества подготовки школьников и отбор наиболее подготовленных учеников для поступления дальше в вузы.Введение ЕГЭ показало необходимость измен...
презентация по теме "Место предмета "Естествознание" в курсе средней школы. Мнения "за" и "против"
Сегодня пожалуй, трудно найти таких людей, которых не волновали бы проблемы среднего образования в школе....
Текстовые задачи в курсе средней школы
Текстовые задачи - один из основных разделов школьного курса математики, прежде всего потому, что это единственная тема школьного курса, иллюстрирующая приложение математических методов. В связи с вне...
Цели и задачи преподавания литературы в средней школе
Эссе посвящено значимости преподавания литературы....
Методика обучения решению задач на проценты в курсе средней школы.
Важнейшей характеристикой школьного образования является то, что оно дает глубокие и прочные знания, навыки и умения, которые требуются не только в учебной, но и практической деятельности. Математика,...