Развитие творческих способностей на уроках математики
учебно-методический материал по математике на тему

Грибанова Оксана Павловна

Из опыта работы по развитию творческиз способностей на уроках математики в начальной школе

Скачать:


Предварительный просмотр:

Психологи и педагоги, работающие по исследованию специального, целенаправленного развития креативности, выделяют следующие основные условия, влияющие на формирование творческого мышления:

  • индивидуализация образования;
  • исследовательское обучение;
  • проблематизация.

Для определения уровня креативности Дж. Гилфорд выделил 16 гипотетических интеллектуальных способностей, характеризующих креативность.

Среди них:

  1. беглость мысли – количество идей, возникающих в единицу времени;
  2. гибкость мысли – способность переключаться с одной идеи на другую;
  3. оригинальность – способность производить идеи, отличающиеся от общепринятых взглядов;
  4. любознательность – чувствительность к проблемам в окружающем мире;
  5. способность к разработке гипотезы;
  6. ирреальность – логическая независимость реакции от стимула;
  7. фантастичность – полная оторванность ответа от реальности при наличии логической связи между стимулом и реакцией;
  8. способность решать проблемы, то есть способность к анализу и синтезу;
  9. способность усовершенствовать объект, добавляя детали;
  10. и так далее.

Е.П. Торрес выделяет четыре основных параметра, характеризующих креативность:

  • легкость - быстрота выполнения текстовых заданий;
  • гибкость – число переключений с одного класса объектов на другой в ходе ответов;
  • оригинальность – минимальная частота данного ответа к однородной группе;
  • точность выполнения заданий.

В.А. Крутецкий структуру творческого мышления в математике представляет следующим образом:

  • способность к формализованному восприятию математического материала, схватывание формальной структуры задач;
  • способность к логическому мышлению в сфере количественных и качественных отношений, числовой и знаковой символики, способность мыслить математическими символами;
  • способность к совершенствованию процесса математических рассуждений и системы соответствующих действий, способность мыслить свернутыми структурами;
  • гибкость мыслительных процессов в математической деятельности;
  • стремление к ясности, простоте, экономичности и рациональности решения;
  • способность к быстрой и свободной перестройке направленности мыслительного процесса, переключение с прямого на обратный ход мысли;
  • математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы перехода к ним);
  • математическая направленность ума.

А. Савенков, работающий над исследованием специального, целенаправленного развития креативности, выделяет следующие условия формирования творческого мышления учащихся:

  • приоритет заданий дивергентного и конвергентного типа, то есть задания дивергентного типа должны не только присутствовать как равномерные, но и в некоторых предметных занятиях доминировать;
  • доминирование развивающих возможностей учебного материала над его информационной насыщенностью;
  • сочетание условия развития продуктивного мышления с навыками его практического использования;
  • доминирование собственной исследовательской практики над репродуктивным усвоением знаний;
  • ориентация на интеллектуальную инициативу, понятия «интеллектуальная инициатива» предполагает проявление ребенком самостоятельности при решении разнообразных учебных и исследовательских задач, стремление найти оригинальный, возможно альтернативный путь решения, рассматривать проблему на более глубоком уровне либо с другой стороны;
  • неприятие конформизма, необходимо исключать все моменты, требующие конформистских решений;
  • формирование способностей к критичности и лояльности в оценке идей;
  • стремление к максимально глубокому исследованию проблемы;
  • высокая самостоятельность учебной деятельности, самостоятельный поиск знаний, исследование проблем;
  • индивидуализация – создание условий для полноценного проявления и развития специфичных личностных функций субъектов образовательного процесса;
  • проблематизация – ориентация на постановку перед детьми проблемных ситуаций.

Учитель должен внимательно следить за развитием интересов учащихся, «подбрасывать им посильные для понимания и разрешения проблемы. Учащиеся, в свою очередь, должны быть уверены, что разрешая эти проблемы, они открывают новые и полезные для себя знания. Уроки строятся на основе «полного акта мышления», чтобы учащиеся на них сумели:

  • почувствовать конкретную трудность;
  • определить ее (выявить проблему);
  • сформулировать гипотезу по ее преодолению;
  • получить решение проблемы или ее части;
  • проверить гипотезу с помощью наблюдения или экспериментов.

Сегодня разработана современная технология обучения, которая придерживается концептуальных положений, выдвинутых американским педагогом.

  1. Ребенок в антитезе повторяет путь человечества в познании.
  2. Усвоение знаний есть спонтанный, неуправляемый процесс.
  3. Ребенок усваивает материала, не просто слушая или воспринимая органами чувств, а как результат удовлетворения возникших у него потребностей в знаниях, являясь активным субъектом своего обучения.
  4. Условиями успешности обучения являются: проблематизация учебного материала (знания дети удивления и любопытства); активность ребенка (знания должны усваиваться с аппетитом); связь обучения с жизнью ребенка, игрой, трудом.

                       Новые ЗУН, СУД

Информация        Решение проблемы

                Поиск

Помощь                Проблема (осознание        Новые ЗУН

                        неизвестного)                        развитие СУФ

                Анализ

Педагогическая                Психологическая проблем-      

проблемная ситуация        ная ситуация

Специальные функции:

  • воспитание навыков творческого усвоения знаний (применение логических приемов или отдельных способов творческой деятельности);
  • воспитание навыков творческого применения знаний (применение усвоенных знаний в новой ситуации) и умение решать учебные проблемы;
  • формирование и накопление опыта творческой деятельности (овладение методами научного исследования, решение практических проблем и художественного отображения действительности).

В зависимости от характера взаимодействия учителя и учащиеся выделяю четыре уровня проблемного обучения:

  • уровень несамостоятельной активности – восприятие учениками объяснения учителя, усвоение образца умственного действия в условиях проблемной ситуации, выполнение учеником самостоятельных работ, упражнений воспроизводящего характера, устное воспроизведение;
  • уровень полу самостоятельной активности характеризуется применением прежних знаний в новой ситуации и участие школьников в поиске способа решения поставленной учителем проблемы;
  • уровень самостоятельной активности – выполнение работ репродуктивно-поискового типа, когда ученик сам решает по тексту учебника, применяет прежние знания в новой ситуации, конструирует, решает задачи среднего уровня сложности, доказывает гипотезы с незначительной помощью учителя и так далее;
  • уровень творческой активности – выполнение самостоятельных работ, требующих творческого воображения, логического анализа и догадки, открытия нового способа решения учебной проблемы, самостоятельного доказательства; самостоятельные выводы и обобщения, изобретения, написание художественных сочинений.

            Примеры заданий на разных уровнях проблемности во II классе.

Закрепление табличных случаев умножения.

Самый высокий уровень.

Продолжи ряд:

2, 4, 6, 8, …

7, 14, 21, …

8, 16, 24, …

Составь самостоятельно свой ряд.

Высокий уровень.

Продолжи ряд, вспомнив таблицу умножения на 2, на 7 и на 8:

2, 4, 6, 8, …

7, 14, 21, …

8, 16, 24, …

Составь свой ряд.

Средний уровень.

Вспомни таблицу умножения на 2, на 7, на 8.

Продолжи ряд чисел, как в 1 случае:

  1. 2, 4, 6, 8, 10, 12, 14, 16, 18, 20;
  2. 8, 16, 24, …;
  3. 7, 14, 24, …

Составь свой ряд.

Низкий уровень.

Продолжи ряд чисел, вспомнив таблицу умножения на 2, на 7, на 8 и запиши таблицу умножения, которую использовал при выполнении задания, как в 1 случае:

  1. 2, 4, 6, 8, 10, 12, 18, 20;                2*1=2        2*6=12
  2. 8, 16, 24, …;                                        2*2=4        2*7=14
  3. 7, 14, 24, …                                        2*3=6        2*8=16

2*4=8        2*9=18

2*5=10        2*10=20

Задание на смекалку.

Самый высокий уровень.

Найди простой способ вычисления суммы всех чисел в ряду от 1 до 20.

Высокий уровень.

Найди сумму такой пары чисел, чтобы можно было простым способом произвести вычисление.

1+2+3+…+18+19+20=

Средний уровень.

Найди простой способ вычисления, соединив линиями пары чисел, как на рисунке.

1+2+3+…+18+19+20=

Низкий уровень.

Найди сумму каждой пары чисел, соединенных линиями. Вычисли простым способом сумму всех чисел.

1+2+3+…+18+19+20=

Усвоение смысла умножения.

Самый высокий уровень.

Замени сложение умножением:

1+1+1+1+1=

7+7+7=

0+0+0+0=

7+1+0=

9+9+9+9+9+9=

Высокий уровень.

Замени сложение умножением. Чем отличается четвертый пример от остальных?

1+1+1+1+1=

7+7+7=

0+0+0+0=

7+1+0=

9+9+9+9+9+9=

Средний уровень.

Замени сложение умножением, вспомнив, что называется умножением.

1+1+1+1+1=

7+7+7=

0+0+0+0=

7+0+1=

9+9+9+9+9+9=

Чем отличается 4 пример от остальных?

Низкий уровень.

Замени сложение умножением, вспомнив, что сложение только слагаемых можно назвать умножением.

1+1+1+1+1=

7+7+7=

0+0+0+0=

1+7+0=

9+9+9+9+9+9=

Переместительное свойство сложения.

Самый высокий уровень.

Как быстро решить эти четыре примера?

36+18+12=                24+37+16=

47+35+3=                        47+38+13=

Высокий уровень.

Воспользуйтесь перестановкой слагаемых и быстро решите эти примеры.

36+18+12=                24+37+16=

47+35+3=                        47+38+13=

Средний уровень.

Воспользуйтесь перестановкой слагаемых и быстро решите примеры как в 1 случае.

36+18+12=36+30+66                24+37+16=

47+35+3=                                47+38+13=

Низкий уровень.

Быстро решите примеры, вспомнив свойство сложения: от перестановки слагаемых сумма не меняется. Сначала сложите числа, которые в муссе дают круглое число. С круглыми числами легче выполнять действие.

36+18+12=36+30+66                24+37+16=

47+35+3=                                47+38+13=

Решение задач по схемам.

Самый высокий уровень.

По схеме составь как можно большее количество задач и решите их.

   Х      Х     137

       2

         821

Высокий уровень.

По схеме составь задачу и реши ее.

   Х      Х     137

       2

         821

Средний уровень.

Реши задачу, используя схему.

Алеша на каникулы едет к бабушке. Ему предстоит путь в 821 км. Поехав какую-то часть пути на автомобиля, он проедет такую же часть на автобусе. И ему останется проехать 137 км на поезде. Сколько км он проедет на автобусе?

   Х      Х     137

       2

         821

Низкий уровень.

Соответствует ли данная задача схеме?

(Задачу и схему см. в среднем уровне.)

Распределительный закон умножения относительно сложения.

Самый высокий уровень.

Реши простым способом примеры и придумай похожие.

597*10-(597*8+597*2)=

793-(703*97-703*96)=

(97*8+97*2)-900=

Высокий уровень.

Реши простым способом примеры.

597*10-(597*8+597*2)=

793-(703*97-703*96)=

(97*8+97*2)-900=

Средний уровень.

Реши примеры, используя свойство умножения относительно сложения.

597*10-(597*8+597*2)=

793-(703*97-703*96)=

(97*8+97*2)-900=

Низкий уровень.

Решите примеры, используя свойство умножения относительно сложения: а(b+c)=a*b+a*c.

597*10-(597*8+597*2)=

793-(703*97-703*96)=

(97*8+97*2)-900=

Решение неравенств.

Самый высокий уровень.

Реши неравенство без вычисления.

8304-6209 … 8304-7000

Высокий уровень.

Решите неравенство без вычисления (используя чертеж).

8304-6209 … 8304-7000

Средний уровень.

Реши неравенство без вычисления.

8304-6209 … 8304-7000

Низкий уровень.

Реши неравенство без вычисления.

8304-6209 … 8304-7000

Используй схему.

         8304

               6209

         8304

             7000

Геометрический материал.

Самый высокий уровень.

Из приведенных ниже фигур выполните объекты, заданные в квадратах, каждую фигуру можно использовать многократно, менять ее размер, но нельзя добавлять другие фигуры и линии.

   a   b    c    d            лицо             лампа           клоун

  Из фигур:    a и b           b, c, d   a, b, c, d

Высокий уровень.

Из приведенных ниже фигур выполните объекты, заданные в квадратах, как в первом, каждую фигуру можно использовать многократно, менять ее размер, но нельзя добавлять другие фигуры и линии.

   a   b    c   d            

  лицо             лампа           клоун

  Из фигур:    a и b           b, c, d   a, b, c, d

Средний уровень.

Из фигур                    составь клоуна, причем, ка-

               a    b   c    d

ждую фигуру можно использовать многократно, менять ее размер, но нельзя добавлять другие фигуры или линии.

         

  лицо             лампа           клоун

Низкий уровень.

Какие фигуры из фигур                   использованы

                            а    b   c    d

при изображении лица, лампы, клоуна? Сосчитай и напиши.

         

  лицо             лампа           клоун

                              лицо       лампа      клоун

Доли.

Самый высокий уровень.

Реши задачу: Пассажир, проехав полпути, заснул. Когда он проснулся, ему осталось ехать еще половину того пути, что он проехал спящим. Какую часть всего пути он проспал?

Высокий уровень.

Реши задачу, сделав рисунок.

Пассажир, проехав полпути, заснул. Когда он проснулся, ему осталось ехать еще половину того пути, что он проехал спящим. Какую часть всего пути он проспал?

Средний уровень.

Посмотри внимательно на рисунок и реши задачу.

Пассажир, проехав полпути, заснул. Когда он проснулся, ему осталось ехать еще половину того пути, что он проехал спящим. Какую часть всего пути он проспал?

        эту часть пути он проехал спящим

A            B

Низкий уровень.

Дана задача и рисунок к ней.

Подсказка: Вторую часть пути раздели на равные части, одну из этих частей он проехал спящим. Весь путь у нас разделился на 4 равные части. Объясни почему и найди ответ на вопрос задачи.

Занятие факультатива по математике (2 класс, I четверть).

Тема занятия: сложение и вычитание в пределах 100. Развитие восприятия и воображения.

Цель.

  1. Закрепить навыки сложения и вычитания в пределах 100.
  2. Развивать и совершенствовать воображение учащихся.

Оборудование: классная доска, плакаты с заданиями, набор спичек у каждого учащегося, карточки для игры «Внимание».

Ход занятия.

- Сегодня мы проведем первый факультатив по математике. Но чтобы запомнить все, что увидим, надо быть очень внимательным. Поэтому перед началом нашей работы мы потренируем наше внимание.

I. Игра «Внимание»: учитель показывает карточку с изображением какой-либо фигуры, ученики должны запомнить то, что было на карточке, и зарисовать это в своей тетради «Творчество».

Карточка находится перед глазами учеников не более 2-3 с. За одну игру учитель показывает не более 6-8 карточек (размером 7х9 см).

II. Разминка для ума.

1. Даны числа:

23   74    41    14

40   17    60    50

Какое число меньшее в каждой строке? (в первой строке лишнее число 74, у остальных чисел сумма цифр равна 5; во второй – 17, в записи остальных чисел есть 0).

2. Что общего в записи чисел каждой строки:

12    24    20    22

30    37    13    83

(в записи чисел первой строки использована цифра 2, а во второй – цифра 3).

3. По какому правилу записан каждый ряд чисел?

Продолжи его:

10    30    50    …

14    34    54    …

(числа в первой и во второй строке записаны через 20)

4. По какому признаку записаны столбики примеров:

27+5    76+20    44+2

39+5    56+30    34+5

29+4    35+40    32+6

(основу классификации составляет вычислительны прием)

5. Чем похожи между собой записанные в каждом столбике примеры и чем отличаются?

60-6    32-11

60-16   32-13

6. Придумай к каждому данному примеру похожий пример:

12+6=18

16-4=12

(при составлении таких примеров учащихся должны указать тот признак, на который они ориентируются).

7. Найди ошибки и исправь решение примеров:

43-11=43-(10+1)=33+1=34

60-17=60-(10+7)=50+7=57

III. Под каждой фигурой поставь нужную цифру:

А

В

С

К

Е

(рассматривая рисунок на плакате, дети замечают, что 10 из всех фигур, приведенных на рисунке, имеют свои номера, и задача учащихся состоит в том, чтобы занумировать каждую фигуру тем же номером, который имеет одинаковая с ней фигура. Ответ:

А – 2, 5, 2, 1, 9;

В – 3, 4, 2, 9, 5;

С – 0, 6, 7, 1, 8;

К – 5, 4, 5, 8, 0;

Е – 7, 3, 9, 6, 5.

IV. Задания со спичками.

Отсчитайте 12 спичек и  выложите их по образцу рисунка.

Переложите 8 спичек так, чтобы получилось 4 равных квадрата. Нарисуйте их в тетрадь. Верните все спички в исходное положение. Теперь переложите 8 спичек так, чтобы получилась мельница; нарисуй ее в тетради.

V. Цифровой диктант.

Если вы согласны с утверждениями, высказанными мною, поставьте цифру 1, если вы считаете, что информация неправильная – ставьте 0. в конце диктанта дайте итоговый ответ. Работу нужно выполнить в быстром темпе.

  1. 36+3-6=33
  2. моя любимая сказка «Али-Баба и 20 разбойников»
  3. 55+53=98
  4. май в году по счету пятый
  5. букв в русском алфавите 33
  6. 100-20+1=91
  7. чертова дюжина – это 13.

Итог: 4

Ответ: 1 – 0 – 0 – 1 – 1 – 0 – 1

Домашнее задание:

Раздели числа на две группы: 15, 24, 25, 28, 30, 32, 35, 36, 40.

Итог: вот и закончилось наше занятие! Понравилось? Встретимся через месяц. Кто придумает интересное задание и продемонстрирует на следующем факультативе, я буду благодарна и рада.

    I. Задачи с меняющимся содержанием.

1) Ворон живет около 75 лет, слон на 5 лет меньше, а щука на 5 лет меньше, чем слон. На сколько лет меньше живет щука чем ворон? (2-й вариант: на сколько лет меньше живет щука, чем слон?)

2) Брат и сестра читают книгу «Маугли», в которой 60 страниц. Брат читает каждый день по 15 страниц, а сестра по 20. кто из них раньше прочитает всю книгу? (2-й вариант: слово «раньше» заменяется словом «позже»).

3) На озеро прилетело 48 уток и 6 гусей. Во сколько раз уток больше чем гусей? (2-й вариант: на сколько уток больше чем гусей).

4) Кате 10 лет, а Свете в 2 раза меньше. Алена в 3 раза старше Светы. Сколько лет Свете и Алене? (2-й вариант: Света на 2 года младше, а Алена на 3 года старше Светы).

5) На 3 теплицы потребовалось 60 м пленки. Сколько пленки нужно для 6 таких теплиц? (2-й вариант: на 6 теплиц потребовалось 60 м пленки, сколько пленки нужно для 3 таких теплиц?).

II. Задачи на перестройку действия.

1) Замени сложение умножением:

4+4+4=

6+6+6+6+6=

2+2=

9+9+9+9=

5+5+5+5+5+5+5=

а+а+а=

3+2+5=

2) Дано 4, прибавь 3, потом умножь на 3;

дано 1

дано 5

дано 14

дано 31

дано 47

дано х

дано а

дано 2а

дано 3а, раздели на 3, потом вычти 3.

3) Пример квадрата равен 16. Какой станет пример этой фигуры, если:

  1. Его стороны уменьшить вдвое;
  2. Его стороны уменьшить на 1 см;
  3. Его стороны уменьшить на 3 см;
  4. Его стороны увеличить втрое.

4) Специальный тест.

137

795

421

317

651

349

274

953

017

273

654

034

219

526

398

703

721

615

130

731

275

392

543

754

210

372

908

043

420

539

Этот тест представляет собой своего рода корректурную таблицу. Учащимся дается задание зачеркнуть все сочетания цифр, где имеется цифра 3. задание предлагается выполнить возможно быстрее. После этого дается второй экземпляр такой же таблицы с противоположным заданием – зачеркнуть все числа, кроме тех, где есть цифра 3.

Отмечается время, затраченное на выполнение каждого задания, и количество ошибок. Задание совершенно равноценны в отношении трудностей: в таблице имеется 15 чисел с цифрой 3 и столько же без этой цифры.

III. Задачи, наталкивающие на «самоограничение».

1) дано 9 точек.

Соедините их одной непрерывной ломаной линией из четырех отрезков (не отрывая карандаша от бумаги).

2) Маше и Ксюше вместе 10 лет, четыре года назад было 2 года. Сколько лет Маше и Ксюше, если Маша старше Ксюши на 2 года?

3) Из пяти палочек постройте 2 треугольника.

4) Одним отрезком прямой пересечь четырехугольник, чтобы получилось 4 треугольника.

IV. Задачи с несколькими решениями.

1) В два автобуса сели 123 экскурсанта, затем из одного вышло 8 человек, трое из них село во второй автобус. После этого стало пассажиров поровну. Сколько пассажиров было в каждом автобусе вначале? (67 чел и 56 чел).

2) В древнехакассой армии (IX век) насчитывалось несколько тысяч воинов, а у их врагов – уйгуров в 2 раза больше. Вместе у них было 90 тысяч воинов. Сколько солдат в каждой армии. (30 тыс и 60 тыс).

3) В столовую привезли 4 мешка сахара и 6 мешков муки, всего 500 кг. Причем вместимость мешков была одинаковая. Найдите сколько кг муки и кг сахара привезли в столовую? (200 и 300)

4) Для озеленения города было закуплено 200 штук кленов за 360 рублей и 300 лип, стоимость которых в 2 раза больше. Сколько заплатили за клены и липы всего? (288.000)

5) Рабочему поручено изготовить за 10 часов – 30 деталей. Но он экономил время, успевая делать 1 деталь за 15 минут. Сколько деталей сверх задания сделает рабочий за счет сэкономленного времени? (10 дет.)

6) Одна половина участка занята огородом, другая – садом и цветником. Сад занимает 400 м2, цветник  этой площадки. Чему равна площадь всего участка? (840 м2).

V. Задачи на соображение, логическое рассуждение.

1) Летела стая гусей: один гусь впереди, а два позади; один позади, а два впереди; один гусь между двумя и три в ряд. Сколько было всего гусей? (3 гуся, изобразить из по-разному).

По двору ходят куры и кролики, у всех вместе 20 голов и 52 ноги. Сколько всего кур и кроликов во дворе? (6 кроликов и 14 кур).

3) Сын спросил у отца, сколько ему лет. Отец ответил: «Если к моим годам прибавить полсотни и еще 5 лет, то мне будет 100 лет». Сколько лет отцу? (45 лет).

4) Лестница состоит из 15 ступеней. На какую ступеньку надо встать, чтобы быть на середине лестницы? (на восьмую).

5) На уроке физкультуры ученики выстраивались в линейку на расстоянии 1 м друг от друга. Вся линейка растянулась на 25 м. Сколько было учеников? (26 учеников).

6) Миша захотел узнать, сколько лет его дедушке. Дедушка ответил: «Догадайся сам. Если из наибольшего двузначного числа вычесть 90, результат увеличить в три раза и прибавить 73, то получится число моих лет». Сколько лет дедушке? (100 лет).

7) В древнехакасском государстве тархан (вельможа) младше цзян-цзеня (генерала), а цзян-цзюн младше кагана (государя). Кто младше, тархан или каган?

VI. Задачи типа: «Продолжи ряд».

1) Числовой тест.

2, 4, 6, 8, …

3, 6, 12, …

4, 9, 16, 25, …

20, 18, 16, 14, …

2, 3, 4, 9, 16, …

1, 4, 16, 64, …

5, 10, 15, 20, …

11, 13, 15, 17, …

9, 10, 11, 12, …

81, 27, 9, …

2) Фигурный текст.

1. Какая геометрическая фигура здесь лишняя?

2. Слева четыре фигуры, образующие ряд. Справа пять фигур. Найди среди них ту, которая подходит в левый ряд пятой.

3) Найди фигуру в правой части, которая так относилась бы к третьей фигуре, слева, как вторая относится к первой.

4) Какой фигуры недостает?

VII. Задачи на доказательство.

1) Восстанови пропущенные цифры в записи сложения:

*54                *2*                5*6

1*4                2*3                *5*

468                997                690

2) Восстанови пропущенные цифры в записи вычитания:

*9*                7*8                *2*

1*3                *2*                1*3

271                584                369

3) Восстанови пропущенные цифры в записи умножения и деления:

4*0:2=220

9**:3=300

28x*=84

*9:3=13

9*:15=6

22x1*=264

4) Восстанови пропущенные цифры в записи умножения:

 3*                *4                **                 9*

  *                 *                 5                  *

**7                4*6                8*                *76

5) Найди цифровое значение букв в этой условной записи сложения и умножения:

авж                 бё

 да                  е

ажз                аеб

VIII. Задачи с различной степенью наглядности решения.

1) Пассажир, проехав полпути, заснул. Когда он проснулся, есму осталось ехать еще половину того пути, что он проехал спящим. Какую часть всего пути он проспал? ( часть).

2) Сколько весит кирпич, если он весит один килограмм плюс полкирпича? (2 кг).

3) Банка с керосином весит 8 кг. Из нее вылили половину керосина, после чего банка стала весить 4,5 кг. Определить вес банки (1 кг).

4) Два грузовика в одно время выехали из пункта А в пункт Б и обратно (без остановки). Первый грузовик двигался все время с одной и той же скоростью вдвое меньшей, чем первый, но зато обратно со скоростью вдвое большей, чем первый. Какой грузовик раньше вернется в пункт А? (оба вернутся в одно и тоже время).

5) Дочери 8 лет, матери 38 лет. Через сколько лет мать будет втрое старше дочери? (через 7 лет).

6) Каковы должны быть размеры квадрата, чтобы его пример численно равняется его площади? (4).

7) Высота сосны 20 метров. По ней ползет улитка. Каждый день поднимается на 2 метра вверх и каждую ночь спускаясь на 1 м вниз. За сколько дней улитка поднимется на вершину сосны?                               


По теме: методические разработки, презентации и конспекты

Развитие творческих способностей на уроках литературного чтения

Выступление на тему "Развитие творческих способностей учащихся младших классов на уроках литературного чтения". Развитие творческих способностей – цель работы каждого учителя. Творчество оживляет позн...

Статья "Развитие творческих способностей на уроках окружающего мира".

Статья на тему "Развитие творческих способностей на уроках окружающего мира по программе А.А. Плешакова "Школа России"....

Развитие творческих способносте на уроках ИЗО, математики

У каждого ребенка есть способности и таланты. Дети от природы любознательны и полны желания учится. Для того чтобы они могли проявить свои дарования, нужно умное руководство со стороны взрослых. ...

Развитие речи и логического мышления. Развитие творческих способностей на основе математики.

Цели:Продолжить работу по обогащению речи дошкольников. закреплению знаний о числах первого десятка, по освоению простых способов моделирования, умению делить фигуры по различным признакам.Воспи...

Развитие творческих способностей на уроках математики.

Задания по математике, направленные на развитие творческих способностей младших школьников....