Рабочая программа по математике "Начальная школа ХХI век" 3класс
рабочая программа (3 класс) на тему

Тищенко Светлана Викторовна

Рабочая программа по математике "Начальная школа ХХI век" 3класс, 4 часа в неделю

Скачать:


Предварительный просмотр:

Рабочая программа  «Начальная школа ХХI век»

по математике, 3 класс

Содержание   рабочей  программы  по  математике

  1. Пояснительная записка
  1. Учебно-методическое обеспечение предмета.
  2. Общая характеристика учебного предмета.
  3. Структура курса.
  1. Содержание учебного предмета.
  2. Планируемые результаты освоения программы по математике  в третьем классе.
  3. Учебно – тематическое планирование.
  4. Календарно-тематическое планирование по предмету.

Пояснительная записка

Рабочая программа курса «Математика» разработана на основе авторской программы для 3класса Рудницкой В.Н. (Рудницкая В.Н. Математика: программа: 1-4 классы/В.Н.Рудницкая. - М.:Вентана - Граф, 2012.)

Программа рассчитана на 136 часов.

Цели и задачи обучения математике.

Обучение математике в начальной школе направлено на достижение следующих целей:

  • обеспечение интеллектуального развития младших школьников: формирование основ логико-математического мышления, пространственного воображения, овладение учащимися математической речью для описания математических объектов и процессов окружающего мира в количественном и пространственном отношениях, для обоснования получаемых результатов решения учебных задач;
  • предоставление младшим школьникам основ начальных математических знаний и формирование соответствующих умений: решать учебные и практические задачи; вести поиск информации (фактов, сходств, различий, закономерностей, оснований для упорядочивания и классификации математических объектов); измерять наиболее распространенные в практике величины;
  • умение применять алгоритмы арифметических действий для вычислений; узнавать в окружающих предметах знакомые геометрические фигуры, выполнять несложные геометрические построения;
  • реализация воспитательного аспекта обучения: воспитание потребности узнавать новое, расширять свои знания, проявлять интерес к занятиям математикой, стремиться использовать математические знания и умения при изучении других школьных предметов и в повседневной жизни, приобрести привычку доводить начатую работу до конца, получать удовлетворение от правильно и хорошо выполненной работы, уметь обнаруживать и оценивать красоту и изящество математических методов, решений, образов.

Важнейшими задачами обучения являются создание благоприятных условий для полноценного математического развития каждого ученика на уровне, соответствующем его возрастным особенностям и возможностям, и обеспечение необходимой и достаточной математической  подготовки  для дальнейшего успешного обучения в основной школе.

Математика как учебный предмет вносит заметный вклад в реализацию важнейших целей и задач начального общего образования младших школьников. Овладение учащимися начальных классов основами математического языка для описания разнообразных предметов и явлений окружающего мира, усвоение общего приема решения задач как универсального действия, умения выстраивать логические цепочки рассуждений, алгоритмы выполняемых действий, использование измерительных и вычислительных умений и навыков создают необходимую базу для успешной организации процесса обучения учащихся в начальной школе.

Личностные, метапредметные и предметные результатыосвоения курса математики

Личностными результатами обучения учащихся являются:

  • самостоятельность мышления; умение устанавливать, с какими учебными задачами ученик может самостоятельно успешно справиться;
  • готовность и способность к саморазвитию;
  • сформированность мотивации к обучению;
  • способность характеризовать и оценивать собственные математические знания и умения;
  • заинтересованность в расширении и углублении получаемых математических знаний;
  • готовность использовать получаемую математическую подготовку в учебной деятельности и при решении практических задач, возникающих в повседневной жизни;
  • способность преодолевать трудности, доводить начатую работу до ее завершения;
  • высказывать собственные суждения и давать им обоснование;
  • владение коммуникативными умениями с целью реализации возможностей успешного сотрудничества с учителем и учащимися класса (при групповой работе, работе в парах, в коллективном обсуждении математических проблем).

Метапредметными результатами обучения являются:

  • владение основными методами познания окружающего мира(наблюдение, сравнение, анализ, синтез, обобщение, моделирование);
  • понимание и принятие учебной задачи, поиск и нахождение способов ее решения;
  • планирование, контроль и оценка учебных действий; определение наиболее эффективного способа достижения результата;
  • выполнение учебных действий в разных формах (практические работы, работа с моделями и др.);
  • создание моделей изучаемых объектов с использованием знаково-символических средств;
  • понимание причины неуспешной учебной деятельности и способность

конструктивно действовать в условиях неуспеха;

  • адекватное оценивание результатов своей деятельности;
  • активное использование математической речи для решения

разнообразных коммуникативных задач;

  • готовность слушать собеседника, вести диалог;
  • умение работать в информационной среде.

Предметными результатами учащихся на выходе из начальной школы являются:

  • овладение основами логического и алгоритмического мышления, пространственного воображения и математической речи;
  • умение применять полученные математические знания для решения учебно-познавательных и учебно-практических задач, а также использовать эти знания для описания и объяснения различных процессов и явлений окружающего мира, оценки их количественных и пространственных отношений;
  • овладение устными и письменными алгоритмами выполнения арифметических действий с целыми неотрицательными числами, умениями, вычислять значения числовых выражений, решать текстовые задачи, измерять наиболее распространенные в практике величины, распознавать и изображать простейшие геометрические фигуры;
  • умение работать в информационном поле (таблицы, схемы, диаграммы, графики, последовательности, цепочки, совокупности);
  • представлять, анализировать и интерпретировать данные.

Содержание курса

Множества предметов. Отношения между предметами и между множествами предметов.

Сходства и различия предметов. Соотношение размеров предметов (фигур).Понятия: больше, меньше, одинаковые по размерам; длиннее, короче, такой же длины (ширины, высоты).

Соотношения между множествами предметов. Понятия: больше, меньше, столько же, поровну (предметов), больше, меньше (на несколько предметов).

Универсальные учебные действия:

  • сравнивать предметы (фигуры) по их форме и размерам;
  • распределять данное множество предметов на группы по заданным

признакам (выполнять классификацию);

  • сопоставлять множества предметов по их численностям (путем составления пар предметов)

Число и счет

Счет предметов. Чтение и запись чисел в пределах класса миллиардов. Классы и разряды натурального числа. Десятичная система записи чисел. Представление многозначного числа в виде суммы разрядных слагаемых. Сравнение чисел; запись результатов сравнения с использованием знаков >, =,<. Римская система записи чисел. Сведения из истории математики: как появились числа, чем занимается арифметика.

Универсальные учебные действия:

  • пересчитывать предметы; выражать результат натуральным числом;
  • сравнивать числа;
  • упорядочивать данное множество чисел.

Арифметические действия с числами и их свойства

Сложение, вычитание, умножение и деление, и их смысл. Запись арифметических действий с использованием знаков +, -, •, :.Сложение и вычитание (умножение и деление) как взаимно обратные действия. Названия компонентов арифметических действий (слагаемое, сумма; уменьшаемое, вычитаемое, разность; множитель, произведение; делимое, делитель, частное).

Таблица сложения и соответствующие случаи вычитания. Таблица умножения и соответствующие случаи деления. Устные и письменные алгоритмы сложения и вычитания. Умножение многозначного числа на однозначное, на двузначное и на трехзначное число. Деление с остатком. Устные и письменные алгоритмы деления на однозначное, на двузначное и на трехзначное число.

Способы проверки правильности вычислений (с помощью обратного действия, оценка достоверности, прикидка результата, с использованием микрокалькулятора).

Доля числа (половина, треть, четверть, десятая, сотая, тысячная). Нахождение одной или нескольких долей числа. Нахождение числа по его доле.

Переместительное и сочетательное свойства сложения и умножения; распределительное свойство умножения относительно сложения (вычитания); сложение и вычитание с 0; умножение и деление с 0 и 1. Обобщение: записи свойств действий с использованием букв. Использование свойств арифметических действий при выполнении вычислений: перестановка и группировка слагаемых в сумме, множителей в произведении; умножение суммы и разности на число).

Числовое выражение. Правила порядка выполнения действий в числовых выражениях, содержащих от 2 до 6 арифметических действий, со скобками и

без скобок. Вычисление значений выражений. Составление выражений в соответствии с заданными условиями.

Выражения и равенства с буквами. Правила вычисления неизвестных компонентов арифметических действий.

Примеры арифметических задач, решаемых составлением равенств, содержащих букву.

Универсальные учебные действия:

  • моделировать  ситуацию, иллюстрирующую данное арифметическое действие;
  • воспроизводить устные и письменные алгоритмы выполнения четырех арифметических действий;
  • прогнозировать результаты вычислений;
  • контролировать свою деятельность: проверять правильность выполнения вычислений изученными способами;
  • оценивать правильность предъявленных вычислений;
  • сравнивать разные способы вычислений, выбирать из них удобный;
  • анализировать структуру числового выражения с целью определения порядка выполнения содержащихся в нем арифметических действий.

Величины

Длина, площадь, периметр, масса, время, скорость, цена, стоимость и их единицы. Соотношения между единицами однородных величин. Сведения из истории математики: старинные русские меры длины (вершок, аршин, пядь, маховая и косая сажень, морская миля, верста), массы (пуд, фунт, ведро, бочка). История возникновения месяцев года. Вычисление периметра многоугольника, периметра и площади прямоугольника (квадрата). Длина ломаной и ее вычисление.

Точные и приближенные значения величины (с недостатком, с избытком).Измерение длины, массы, времени, площади с указанной точностью. Запись приближенных значений величины с использованием знака ≈ (примеры: АВ ≈5 см, t ≈ 3 мин, V ≈ 200 км/ч).

Вычисление одной или нескольких долей значения величины. Вычисление значения величины по известной доле ее значения.

Универсальные учебные действия:

  • сравнивать значения однородных величин;
  • упорядочивать данные значения величины;
  • устанавливать зависимость между данными и искомыми величинами при решении разнообразных учебных задач.

Работа с текстовыми задачами

Понятие арифметической задачи. Решение текстовых арифметических задач арифметическим способом. Работа с текстом задачи: выявление известных и неизвестных величин, составление таблиц, схем, диаграмм и других моделей для  представленя данных условия задачи.

Планирование хода решения задачи. Запись решения и ответа задачи. Задачи, содержащие отношения «больше (меньше) на», «больше (меньше)в»; зависимости между величинами, характеризующими процессы купли -продажи, работы, движения тел.

Примеры арифметических задач, решаемых разными способами; задач, имеющих несколько решений, не имеющих решения; задач с недостающими и с лишними данными (не использующимися при решении).

Универсальные  учебные  действия:

  • моделировать содержащиеся в тексте задачи зависимости;
  • планировать  ход решения задачи;
  • анализировать текст задачи с целью выбора необходимых арифметических действий для ее решения;
  • прогнозировать результат решения;
  • контролировать свою деятельность: обнаруживать и устранять ошибки логического характера (в ходе решения) и ошибки вычислительного характера;
  • выбирать верное решение задачи из нескольких предъявленных решений;
  • наблюдать за изменением решения задачи при изменении ее условий.

Геометрические понятия

Форма предмета. Понятия: такой же формы, другой формы. Плоские фигуры: точка, линия, отрезок, ломаная, круг; многоугольники и их виды. Лучи прямая как бесконечные плоские фигуры. Окружность (круг). Изображение плоских фигур с помощью линейки, циркуля и от руки. Угол и его элементы вершина, стороны. Виды углов (прямой, острый, тупой). Классификация треугольников (прямоугольные, остроугольные, тупоугольные). Виды треугольников в зависимости от длин сторон (разносторонние, равносторонние, равнобедренные).

Прямоугольник и его определение. Квадрат как прямоугольник. Свойства противоположных сторон и диагоналей прямоугольника. Оси симметрии прямоугольника (квадрата).

Пространственные фигуры: прямоугольный параллелепипед (куб),пирамида, цилиндр, конус, шар. Их распознавание на чертежах и на моделях. Взаимное расположение фигур на плоскости (отрезков, лучей, прямых, окружностей) в различных комбинациях. Общие элементы фигур. Осевая симметрия. Пары симметричных точек, отрезков, многоугольников. Примеры фигур, имеющих одну или несколько осей симметрии. Построение симметричных фигур на клетчатой бумаге.

Универсальные учебные действия:

  • ориентироваться на плоскости и в пространстве (в том числе различать направления движения);
  • различать геометрические фигуры;
  • характеризовать взаимное расположение фигур на плоскости;
  • конструировать указанную фигуру из частей;
  • классифицировать  треугольники;
  • распознавать пространственные фигуры (прямоугольный параллелепипед, пирамида, цилиндр, конус, шар) на чертежах и на моделях.

Логико-математическая подготовка

Понятия: каждый, какой-нибудь, один из, любой, все, не все; все, кроме. Классификация множества предметов по заданному признаку. Определение

оснований классификации.

Понятие о высказывании. Примеры истинных и ложных высказываний. Числовые равенства и неравенства как примеры истинных и ложных высказываний.

Составные высказывания, образованные из двух простых высказываний с помощью логических связок «и»,«или»,«если, то», «неверно, что» и их истинность. Анализ структуры составного высказывания: выделение в нем простых высказываний. Образование составного высказывания из двух простых высказываний.

Простейшие доказательства истинности или ложности данных утверждений. Приведение гримеров, подтверждающих или опровергающих данное утверждение.

Решение несложных комбинаторных задач и других задач логического характера (в том числе задач, решение которых связано с необходимостью перебора возможных вариантов.

Универсальные  учебные  действия:

  • определять истинность несложных утверждений;
  • приводить примеры, подтверждающие или опровергающие данное утверждение;
  • конструировать алгоритм решения логической задачи;
  • делать выводы на основе анализа предъявленного банка данных;
  • конструировать составные высказывания из двух простых высказываний с помощью логических слов-связок и определять их истинность;
  • анализировать структуру предъявленного составного высказывания; выделять в нем составляющие его высказывания и делать выводы об истинности или ложности составного высказывания;
  • актуализировать свои знания для проведения простейших математических доказательств (в том числе с опорой на изученные определения, законы арифметических действий, свойства геометрических фигур).

Работа с информацией

Сбор и представление информации, связанной со счетом, с измерением; фиксирование и анализ полученной информации.

Таблица; строки и столбцы таблицы. Чтение и заполнение таблиц заданной информацией. Перевод информации из текстовой формы в табличную.

Составление таблиц. Графы отношений. Использование графов для решения учебных задач.

Числовой луч. Координата точки. Обозначение вида А (5).Координатный угол. Оси координат. Обозначение вида А (2,3).

Простейшие графики. Считывание информации. Столбчатые диаграммы. Сравнение данных, представленных на диаграммах. Конечные последовательности (цепочки) предметов, чисел, фигур, составленные по определенным правилам. Определение правила составления последовательности.

Универсальные  учебные  действия:

  • собирать требуемую информацию из указанных источников; фиксировать результаты разными способами;
  • сравнивать и обобщать информацию, представленную в таблицах, на графиках и диаграммах;
  • переводить информацию из текстовой формы в табличную.

Планируемые  результаты  обучения

по  курсу  математики  в  третьем  классе

К концу обучения в третьем классе ученик научится:

называть:

— любое следующее (предыдущее) при счете число в пределах 1000, любой отрезок натурального ряда от 100 до 1000 в прямом и в обратном порядке;

— компоненты действия деления с остатком;

— единицы массы, времени, длины;

— геометрическую фигуру (ломаная);

сравнивать:

— числа в пределах 1000;

— значения величин, выраженных в одинаковых или разных единицах;

различать:

— знаки >и <;

— числовые равенства и неравенства;

читать:

— записи вида 120 < 365, 900 > 850;

воспроизводить:

— соотношения между единицами массы, длины, времени;

— устные и письменные алгоритмы арифметических действий в пределах1000;

приводить примеры:

— числовых равенств и неравенств;

моделировать:

— ситуацию, представленную в тексте арифметической задачи, в виде схемы (графа), таблицы, рисунка;

— способ деления с остатком с помощью фишек;

упорядочивать:

— натуральные числа в пределах 1000;

— значения величин, выраженных в одинаковых или разных единицах;

анализировать:

— структуру числового выражения;

— текст арифметической (в том числе логической) задачи;

классифицировать:

— числа в пределах 1000 (однозначные, двузначные, трехзначные);

конструировать:

— план решения составной арифметической (в том числе логической)задачи;

контролировать:

— свою деятельность (проверять правильность письменных вычислений с натуральными числами в пределах 1000), находить и исправлять ошибки;

решать учебные и практические задачи:

— читать и записывать цифрами любое трехзначное число;

— читать и составлять несложные числовые выражения;

— выполнять несложные устные вычисления в пределах 1000;

— вычислять сумму и разность чисел в пределах 1000, выполнять умножение и деление на однозначное и на двузначное число, используя письменные алгоритмы вычислений;

— выполнять деление с остатком;

— определять время по часам;

— изображать ломаные линии разных видов;

— вычислять значения числовых выражений, содержащих 2–3 действия(со скобками и без скобок);

— решать текстовые арифметические задачи в три действия.

К концу обучения в третьем классе ученик может научиться:

формулировать:

— сочетательное свойство умножения;

—распределительное свойство умножения относительно сложения(вычитания);

читать:

— обозначения прямой, ломаной;

приводить примеры:

— высказываний и предложений, не являющихся высказываниями;

— верных и неверных высказываний;

различать:

— числовое и буквенное выражение;

— прямую и луч, прямую и отрезок;

— замкнутую и незамкнутую ломаную линии;

характеризовать:

— ломаную линию (вид, число вершин, звеньев);

— взаимное расположение лучей, отрезков, прямых на плоскости;

конструировать:

— буквенное выражение, в том числе для решения задач с буквенными данными;

воспроизводить:

— способы деления окружности на 2, 4, 6 и 8 равных частей;

решать учебные и практические задачи:

— вычислять значения буквенных выражений при заданных числовых значениях входящих в них букв;

— изображать прямую и ломаную линии с помощью линейки;

— проводить прямую через одну и через две точки;

—строить на клетчатой бумаге точку, отрезок, луч, прямую, ломаную, симметричные данным фигурам (точке, отрезку, лучу, прямой, ломаной).

Учебно-тематическое планирование

№ п/п

Наименование  разделов

Всего часов

1

Нумерация многозначных чисел

6 ч

2

Величины и их измерение

16  ч

3

Геометрические фигуры

15 ч

5

Сложение и вычитание  трехзначных чисел

13 ч

6

Законы сложения и умножения

12 ч

7

Порядок выполнения действий в числовых выражениях

11 ч

10

Числовые равенства и неравенства

6 ч

12

Умножение и деление трехзначных чисел на однозначное

52 ч

17

Повторение

5 ч

Итого:

136 ч


По теме: методические разработки, презентации и конспекты

Рабочая программа УМК "Начальная школа XXI века" с учетом изменения ФГОС второго поколения

Программа разработанна творческой группой учителей работающих по УМК "Начальная школа XXI века", руководителем которой я являюсь.PROGRAMMA.docx - Word 2007, 2010PROGRAMMA_Word_2003.doc - Word 200...

Рабочая программа УМК "Начальная школа XXI века" 2 класс

Программа разработана с учетом требований ФГОС второго поколения...

Рабочая программа для начальной школы "Школа России"

Рабочая программа для учителей начальной школы по программе "Школа России"....

Рабочая программа для начальной школы( 1-4 класс) по программе "Школа 2100". Авторы программы :Усачёва, Школяр.

Рабочая программа по учебному предмету «Музыка» разработана на основе требований к результатам основной образовательной программы начального общего образования, программы формирования универсальных уч...

Рабочая программа дополнительного образования "Школа грамотеев" 4 класс УМК "Школа России" ФГОС НОО

Пояснительная записка Рабочая программа по курсу «Школа грамотеев» для 4 класса разработана в соответствии с требованиями Федерального государственного образовательного стандарта начальног...

Рабочая программа подготовительного к школе курса «Школа первоклассника»

Рабочая программа подготовительного  к школе курса «Школа первоклассника»...

Рабочая программа «Скоро в школу» (подготовка детей 6-7 лет в школу) учителя начальных классов первой квалификационной категории

Рабочая программа «Скоро в школу» для подготовки детей 6-7 лет к школе  разработана в соответствии с требованиями Федерального государственного стандарта  начального  общего...