программа факультатива 5 класс
рабочая программа (5 класс)
Предварительный просмотр:
Муниципальное бюджетное общеобразовательное учреждение
«Школа № 11» города Сарова
Рассмотрена на заседании МО учителей Протокол №__ от ___.___.2021 Руководитель МО _____________/______________ | Согласована Заместитель директора ___________Кохаева Е.В. «____» _________ 2021 г. | Утверждена приказом директора МБОУ Школы № 11 от _______ 2021 г. № ____ |
РАБОЧАЯ ПРОГРАММА
Факультативного курса
по математике
«Занимательная математика»
Уровень образования ___________среднее общее_______________________
(начальное общее, основное общее, среднее общее образование)
5а класс
(2021 – 2022 учебный год)
Учитель ________Чимрова Татьяна Борисовна_____________________
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Программа курса внеурочной деятельности «Занимательная математика» адресована учащимся 5 класса и является одной из важных составляющих работы с актуально одаренными детьми и с мотивированными детьми, которые подают надежды на проявление способностей в области математики в будущем.
Направление программы - общеинтеллектуальное, программа создает условия для творческой самореализации личности ребенка.
Актуальность программы обоснована введением ФГОС ООО, а именно ориентирована на выполнение требований к содержанию внеурочной деятельности школьников, а также на интеграцию и дополнение содержания предметных программ. Программа педагогически целесообразна, ее реализация создает возможность разностороннего раскрытия индивидуальных способностей школьников, развития интереса к различным видам деятельности, желания активно участвовать в продуктивной деятельности, умения самостоятельно организовать свое свободное время.
Цель программы: создание условий, обеспечивающих интеллектуальное развитие личности школьника на основе развития его индивидуальности; создание фундамента для математического развития, формирование механизмов мышления, характерных для математической деятельности.
Задачи программы:
- пробуждение и развитие устойчивого интереса учащихся к математике и ее приложениям, расширение кругозора;
- расширение и углубление знаний по предмету;
- раскрытие творческих способностей учащихся;
- развитие у учащихся умения самостоятельно и творчески работать с учебной и научно- популярной литературой;
- воспитание твердости в пути достижения цели (решения той или иной задачи);
- решение специально подобранных упражнений и задач, натравленных на формирование приемов мыслительной деятельности;
- формирование потребности к логическим обоснованиям и рассуждениям;
- специальное обучение математическому моделированию как методу решения практических задач;
- работа с одаренными детьми в рамках подготовки к предметным олимпиадам и конкурсам.
Ожидаемые результаты
Личностными результатами реализации программы станет формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества, а так же формирование и развитие универсальных учебных умений самостоятельно определять, высказывать, исследовать и анализировать, соблюдая самые простые общие для всех людей правила поведения при общении и сотрудничестве (этические нормы общения и сотрудничества).
Метапредметными результатами реализации программы станет формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности, а именно следующих универсальных учебных действий.
Регулятивные УУД:
• Самостоятельно формулировать цели занятия после предварительного обсуждения.
- Учиться совместно с учителем обнаруживать и формулировать учебную проблему.
- Составлять план решения проблемы (задачи).
- Работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки.
- В диалоге с учителем учиться вырабатывать критерии оценки и определять степень успешности выполнения своей работы и работы всех, исходя из имеющихся критериев.
Познавательные УУД:
- Ориентироваться в своей системе знаний: самостоятельно предполагать, какая информация нужна для решения той или иной задачи.
- Отбирать необходимые для решения задачи источники информации среди предложенных учителем словарей, энциклопедий, справочников, интернет-ресурсов.
- Добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.).
- Перерабатывать полученную информацию: сравнивать и группировать факты и явления; определять причины явлений, событий.
- Перерабатывать полученную информацию: делать выводы на основе обобщения знаний.
- Преобразовывать информацию из одной формы в другую: составлять более простой план учебно-научного текста.
- Преобразовывать информацию из одной формы в другую: представлять информацию в виде текста, таблицы, схемы.
Коммуникативные УУД:
- Донести свою позицию до других: оформлять свои мысли в устной и письменной речи с учётом своих учебных и жизненных речевых ситуаций.
- Донести свою позицию до других: высказывать свою точку зрения и пытаться её обосновать, приводя аргументы.
- Слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения.
- Читать вслух и про себя тексты научно-популярной литературы и при этом: вести «диалог с автором» (прогнозировать будущее чтение; ставить вопросы к тексту и искать ответы; проверять себя); отделять новое от известного; выделять главное; составлять план.
- Договариваться с людьми: выполняя различные роли в группе, сотрудничать в совместном решении проблемы (задачи).
- Учиться уважительно относиться к позиции другого, учиться договариваться.
Предметными результатами реализации программы станет создание фундамента для математического развития, формирование механизмов мышления, характерных для математической деятельности, а именно:
- познакомиться со способами решения нестандартных задач по математике;
- познакомиться с нестандартными методами решения различных математических задач;
- освоить логические приемы, применяемые при решении задач;
- рассуждать при решении логических задач, задач на смекалку, задач на эрудицию и интуицию
- познакомиться с историей развития математической науки, биографией известных ученых-математиков.
- расширить свой кругозор, осознать взаимосвязь математики с другими учебными дисциплинами и областями жизни;
- познакомиться с новыми разделами математики, их элементами, некоторыми правилами, а при желании самостоятельно расширить свои знания в этих областях;
- познакомиться с алгоритмом исследовательской деятельности и применять его для решения задач математики и других областей деятельности;
- приобрести опыт самостоятельной деятельности по решению учебных задач;
- приобрести опыт презентации собственного продукта.
Формы и режим занятий
В соответствии с ФГОС школьники выбирают содержание внеурочной деятельности, в которой они могут участвовать. В 5-м классе учащимся следует дать время на осознание своего «выбора».
«Вхождение» в математику, ту математику, которой мы мечтаем учить школьников, процесс, требующий значительного времени на анализ, понимание, вживание, осознание учебной задачи, то есть тех качеств, которые заявлены в ФГОС смыслообразованием современного образования. В рамках образовательного процесса следует создавать условия для целенаправленного и комфортного воспитания и развития школьников, в этой связи рекомендованная продолжительность учебного занятия - 90 минут.
Вместе с тем, если в образовательном учреждении не могут быть созданы указанные условия, то режим проведения занятий может быть следующим: по 1 занятию раз в неделю в течение 34 учебных недель.
Заниматься развитием творческих способностей учащихся необходимо систематически и целенаправленно через систему занятий, которые должны строиться на междисциплинарной, интегративной основе, способствующей развитию психических свойств личности - памяти, внимания, воображения, мышления.
Задачи на занятиях подбираются с учетом рациональной последовательности их предъявления: от репродуктивных, направленных на актуализацию знаний, к частичнопоисковым, поисковым, исследовательским и проблемным, ориентированным на овладение обобщенными приемами познавательной деятельности. Система занятий должна вести к формированию важных характеристик творческих способностей: беглость мысли, гибкость ума, оригинальность, любознательность, умение выдвигать и разрабатывать гипотезы.
Методы и приемы обучения: проблемно-развивающее обучение, знакомство с историческим материалом, иллюстративно-наглядный метод, индивидуальная и дифференцированная работа с учащимися, дидактические игры, проектные и исследовательские технологии, диалоговые и дискуссионные технологии, информационные технологии.
Кроме того, эффективности организации курса способствует использование различных форм проведения занятий: эвристическая беседа; практикум; интеллектуальная игра; дискуссия; творческая работа.
При закреплении материала, совершенствовании знаний, умений и навыков целесообразно практиковать самостоятельную работу школьников.
Использование современных образовательных технологий позволяет сочетать все режимы работы: индивидуальный, парный, групповой, коллективный.
Основные формы проведения занятий
- Комбинированное тематическое занятие:
- Выступление учителя или кружковца.
- Самостоятельное решение задач по избранной теме.
- Разбор решения задач (обучение решению задач).
- Решение задач занимательного характера, задач на смекалку, разбор математических софизмов, проведение математических игр и развлечений.
- Ответы на вопросы учащихся.
- Домашнее задание.
- Конкурсы и соревнования по решению математических задач, олимпиады, игры, соревнования:
- Заслушивание рефератов учащихся.
- Коллективный выпуск математической газеты.
- Разбор заданий городской (районной) олимпиады, анализ ошибок.
- Изготовление моделей для уроков математики.
- Чтение отрывков из художественных произведений, связанных с математикой.
- Просмотр видеофильмов по математике.
Специфика математической деятельности такова, что требует системной отработки навыка приобретаемых умений, поэтому поурочные домашние задания в разумных пределах являются обязательными. Домашние задания заключаются не только в повторении темы занятия, решении задач, а также в самостоятельном изучении литературы, рекомендованной учителем.
Результативность изучения программы
Оценивание достижений на занятиях внеурочной деятельности должно отличаться от привычной системы оценивания на уроках.
Оценка знаний, умений и навыков обучающихся является качественной (может быть рейтинговой, многобалльной) и проводится в процессе:
- решения задач,
- защиты практико-исследовательских работ,
- опросов,
- выполнения домашних заданий и письменных работ,
- участия в проектной деятельности,
- участия и побед в различных олимпиадах, конкурсах, соревнованиях, фестивалях и конференциях математической направленности разного уровня, в том числе дистанционных.
УЧЕБНО-ТЕМАТИЧЕКОЕ ПЛАНИРОВАНИЕ
№ п/п | Тема | Кол-во часов | Формы проведения | Дата |
1 | Нулевой цикл «Знакомство» | 2 | Беседа | |
2 | Сюжетные задачи, решаемые с конца | 2 | Обсуждение практикум | |
3 | «Переправы» | 1 | Обсуждение практикум | |
4 | Числовые ребусы | 1 | Практикум соревнование | |
5 | Геометрия: задачи на разрезание | 2 | Беседа моделирование | |
6 | Повторение. Математическое соревнование | 1 | Игра | |
8 | Пересечение и объединение множеств. Круги Эйлера | 1 | Исследовательская работа | |
9 | Задача Пуассона (задачи на переливания) | 2 | Обсуждение практикум | |
10 | Геометрия: лист Мебиуса | 1 | Беседа моделирование | |
11 | Занимательные задачи на проценты | 2 | Обсуждение практикум | |
12 | Знакомство с логикой: «все», «некоторые», отрицание | 1 | Исследовательская работа | |
13 | Сумма и среднее арифметическое | 1 | Обсуждение практикум | |
14 | Повторение. Математическое соревнование | 1 | Игра | |
16 | Задачи на четность: чередование | 2 | Исследовательская работа | |
17 | «Обходы» | 2 | Обсуждение практикум | |
18 | «Взвешивания» | 2 | Обсуждение практикум | |
19 | Сюжетные задачи на совместную работу | 2 | Обсуждение практикум | |
20 | Задачи на четность: разбиение на пары | 1 | Исследовательская работа | |
21 | Примеры и конструкции | 1 | Обсуждение проектная работа | |
22 | Логические задачи | 2 | Игра практикум | |
23 | Повторение | 1 | Практикум обсуждение | |
24 | Итоговая олимпиада | 2 | Олимпиада | |
25 | Заключительное занятие | 1 | Игра обсуждение | |
Итого | 34 |
СОДЕРЖАНИЕ ПРОГРАММЫ
В большинстве случаев содержание занятий непосредственно следует из указанной темы конкретного занятия. Отбор тех или иных задач для рассмотрения на занятии определяется исключительно педагогом, ведущим внеурочную деятельность в соответствии с уровнем базовой математической подготовки учащихся, а также уровнем их мотивации и потенциальной одаренности. Весьма обширный список предлагаемой литературы без труда позволит педагогу наполнить занятие содержательными задачами сообразно своему вкусу и интересам учащихся.
Вместе с тем руководитель, реализующий программу внеурочной деятельности, должен придерживаться следующих основных правил:
- Неправильно заниматься одной темой в течение продолжительного промежутка времени, даже в рамках одного занятия полезно иногда сменить направление деятельности, при этом необходимо постоянно возвращаться к пройденному. Это целесообразно делать, предлагая задачи по данной теме в устных и письменных олимпиадах и других соревнованиях.
- В каждой теме необходимо выделить несколько основных логических «вех» и добиваться безусловного понимания (а не зазубривания!) этих моментов учащимися.
- Необходимо постоянно обращаться к нестандартным и «спортивным» формам проведения занятий, не забывая при этом подробно разбирать все предлагаемые на них задания; необходимо использовать на занятиях развлекательные и шуточные задачи.
Подчеркивая, что подготовка и проведение занятий - это творческий процесс, в который вовлекается педагог, тем не менее, обратим внимание на ряд наиболее важных тем.
Нулевой цикл «Знакомство».
Очень многое в организации и успешности проведения внеурочной деятельности зависит от первого занятия. Возможна такая его структура:
Руководитель освещает перспективы: что будет рассматриваться на занятиях, чем учащиеся будут заниматься, каково содержание и формы работы, как организуется самостоятельная работа и домашняя работа, подготовка докладов, рефератов, мини-проектов. Важно озвучить учащимся основные требования к участникам внеурочной деятельности.
Учащимся предлагается несколько простых задач. Для их решения не требуется ничего, кроме здравого смысла и владения простейшими вычислительными навыками; их назначение - выявление логических и математических способностей учащихся (а в дальнейшем - в качестве эмоциональных разрядок).
Второй час занятия целесообразно посвятить разбору и обсуждению задач
домашнего задания.
Возможно, некоторое время следует посвятить рассказу о математике, о ее значении в жизни человека, о ее связях с другими науками.
Сюжетные задачи, решаемые с конца
Методика решения текстовых задач. Увлечение математикой часто начинается с размышлений над какой-то новой, интересной, нестандартной и понравившейся задачей. Она может встретиться и на школьном уроке, и на занятии математического кружка, в журнале или книге, ее можно услышать от друга или от родителей. Задачи на логику развивают в человеке сообразительность, интеллект и упорство в достижении цели. Очень часто одна решенная логическая задача пробуждает у ребенка устойчивый и долговременный интерес к изучению математики, желание искать и решать новые
логические, нестандартные задачи и задачи повышенной трудности. А это, во многом, и есть главная цель учителя.
Понятие текстовой задачи, сюжетной задачи, виды задач. Чтение условия задачи, анализ условия задачи. Работа с информацией.
Пример задачи:
Трое мальчиков имеют по некоторому количеству яблок. Первый мальчик дает другим столько яблок, сколько каждый из них имеет. Затем второй мальчик дает двум другим столько яблок, сколько каждый из них теперь имеет; в свою очередь и третий дает каждому из двух других столько, сколько есть у каждого в этот момент. После этого у каждого из мальчиков оказывается по 8 яблок. Сколько яблок было у каждого мальчика в начале?
«Переправы».
Один из типов сюжетных задач.
Пример задачи:
Волк, коза и капуста. На берегу реки стоит крестьянин с лодкой, а рядом с ним находятся волк, коза и капуста. Крестьянин должен переправиться сам и перевезти волка, козу и капусту на другой берег. Однако в лодку кроме крестьянина помещается либо только волк, либо только коза, либо только капуста. Оставлять же волка с козой или козу с капустой без присмотра нельзя — волк может съесть козу, а коза — капусту. Как должен вести себя крестьянин?
Числовые ребусы.
Понятие числового ребуса. Условие числового ребуса. Виды ребусов. Правила восстановления записи числового ребуса. Обсуждение решения числовых ребусов.
В большинстве предлагаемые ребусы должны иметь несколько правильных расшифровок, это позволит бороться с решениями путем подбора. В этом случае каждая задача может быть предложена для работы на двух уровнях:
- найти какое-нибудь решение, найти как можно больше решений,
- найти все решения и доказать, что других решений нет.
Для правильного доказательства во втором случае, как правило, необходимо разобрать все случаи в разветвленной логической схеме.
Математические ребусы - удобный объект для тренировки учащихся в проведении достаточно сложных (трудоемких) логических рассуждений, в которых необходимо разобрать все возможные случаи.
Подавляющее большинство возникающих в практической деятельности проблем можно решать многими разными способами. Необходимо рассматривать все эти способы, сравнивать их и выбирать наилучший. Однако исследователи и инженеры часто останавливаются на каком-то одном варианте и не изучают альтернативные, в результате принимаются решения, отличающиеся от оптимальных. Математические ребусы можно использовать во время разминки на учебных занятиях, включать их в домашние занятия, размещать в математических газетах.
Геометрия: задачи на разрезание.
Задачами на разрезание увлекались многие ученые с древнейших времен. Решения многих задач на разрезание были найдены еще с древними греками и китайцами. Первый систематический трактат на эту тему принадлежит перу Абул-Вефа - персидского астролога X века. Геометры всерьез занялись решением задач на разрезание фигур на наименьшее число частей и последующее составление из них той или иной новой фигуры лишь в XX веке, прежде всего, потому, что универсального метода решения таких задач не существует и каждый, кто берется за их решение, может в полной мере проявить свою смекалку, интуицию и способность к творческому мышлению. Учитывая, что здесь не
требуется глубокое знание геометрии, любители могут иногда даже превзойти профессионалов-математиков.Задачи на разрезание помогают как можно раньше формировать геометрические представления у школьников на разнообразном материале. При решении таких задач возникает ощущение красоты, закона и порядка в природе.
На первом этапе рекомендуется рассмотреть задачи на клетчатой бумаге. Задачи, в которых разрезание фигур (в основном это квадраты и прямоугольники) идет по сторонам клеток.
Далее могут рассматриваться задачи, связанные с фигурами-пентамино. Пентамино, изначально, (от др.-греч. nsvrn пять, и домино) — пятиклеточные полимино, то есть плоские фигуры, каждая из которых состоит из пяти одинаковых квадратов, соединённых между собой сторонами («ходом ладьи»). Сегодня пентамино понимается более широко - плоская фигура, составленная из плиток.
Задачи разбиения плоскости, в которых нужно находить сплошные разбиения прямоугольников на плитки прямоугольной формы, задачи на составление паркетов, задачи о наиболее плотной укладке фигур в прямоугольнике или квадрате, задачи, в которых одна фигура разрезается на части, из которых составляется другая фигура.
В наши дни любители головоломок увлекаются решением задач на разрезание, п
Примеры задач:
- Разделите фигуру, изображенную на рисунке, на четыре равные части так, чтобы линия разрезов шла по сторонам квадратов. Придумайте два способа решения.
- На клетчатой бумаге нарисован квадрат размером 5*5 клеток. Придумайте, как разрезать его по линиям сетки на 7 различных прямоугольников.
Пересечение и объединение множеств. Круги Эйлера.
Понятие множества, пересечение множеств или их объединение. Круги Эйлера как геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, с целью наглядного представления.
Эта тема тесно связана с алгеброй множеств. Использование кругов Эйлера придает задачам алгебры множеств наглядность и простоту. Круги Эйлера применяются с успехом в логических задачах для изображения множеств истинности высказываний и во многих других случаях. Изображение условия задачи с помощью кругов Эйлера, как правило, упрощает и облегчает путь к ее решению.
Эта тема может послужить хорошим поводом для того, чтобы рассказать учащимся о жизни и деятельности Леонарда Эйлера и его трудах.
Примеры задач:
Некоторые ребята из нашего класса любят ходить в кино. Известно, что 15 ребят смотрели фильм «Обитаемый остров», 11 человек - фильм «Стиляги», из них 6 смотрели и «Обитаемый остров», и «Стиляги». Сколько человек смотрели только фильм «Стиляги»?
На полке стояло 26 волшебных книг по заклинаниям, все они были прочитаны. Из них 4 прочитал и Гарри Поттер, и Рон. Гермиона прочитала 7 книг, которых не читали ни Гарри Поттер, ни Рон, и две книги, которые читал Гарри Поттер. Всего Гарри Поттер прочитал 11 книг. Сколько книг прочитал только Рон?
Задача Пуассона (задачи на переливания).
Одной из самых известных задач на переливание является задача Симеона Дени Пуассона, знаменитого французского математика и физика. В данной теме рассматривается решение задач на переливание различными методами. Суть этих задач сводится к следующему: имея несколько сосудов разного объема, один из которых наполнен жидкостью, требуется разделить ее в каком-либо отношении или отлить какую- либо ее часть при помощи других сосудов за наименьшее число переливаний. В задачах на переливания требуется указать последовательность действий, при которой осуществляется требуемое переливание и выполнены все условия задачи.
На простых и занимательных примерах решения задач на «переливания» удается рассмотреть такие важные понятия как «команда», «блок-схема», «программа». Решая задачи, учащиеся обучаются моделированию простейших алгоритмов. Решение задач этого цикла требует смекалки, развивают комбинаторное мышление.
В начале занятия следует лишь сформулировать задачу Пуассона, рассказать ее историю, но не пытаться ее решать. Решение задачи необходимо начать с наиболее простых понятных задач, постепенно подводя к общему методу.
Примеры задач:
- В бочке 18 литров бензина. Имеются 2 ведра по 7 литров и черпак объемом 4 литра. Как налить в ведра по 6 литров бензина?
- Имеется стакан кофе и стакан молока. Ложку молока перелили в кофе, полученную смесь тщательно перемешали. Ложку смеси перелили обратно в молоко. Чего больше: молока в кофе или кофе в молоке?
Геометрия: лист Мебиуса.
Таинственный и знаменитый лист Мёбиуса (иногда говорят: «лента Мёбиуса») придумал в 1858 г. немецкий геометр Август Фердинанд Мёбиус, ученик «короля математиков» Гаусса. Исторический очерк о Мебиусе. Несколько слов о топологии. Лист Мебиуса как геометрический объект. Свойства листа Мебиуса. Односторонность. Непрерывность. Связность. Ориентированность. Загадки листа Мебиуса. Применение листа Мебиуса в жизни. Проведение эксперимента с листом Мебиуса.
У каждого есть интуитивное представление о том, что такое «поверхность». Может ли быть что-нибудь неожиданное и даже таинственное в таком обычном понятии? Пример листа Мебиуса показывает, что может.
Лист Мебиуса очень легко сделать, подержать в руках, разрезать, делать с ним различные эксперименты. Изучение листа Мебиуса - хорошее введение в элементы топологии.
К занятию полезно подготовить достаточное количество бумажных лент, с которыми будут работать (проводить эксперименты) учащиеся. Хороши ленты, у которых длина примерно в 5 раз больше ширины.
Примеры экспериментов:
- Что получится, если начать закрашивать лист Мёбиуса с одной стороны, не переходя через край, какая часть ленты окажется закрашенной?
- Что произойдёт с обычным кольцом, если его разрезать посередине?
- А если лист Мёбиуса разрезать посередине (то есть на 2 полоски)? Каков
результат разрезания листа Мёбиуса на 3 полоски?
Занимательные задачи на проценты.
Понятие процента. Нахождение процента от числа и числа по его проценту.
Примеры задач:
- Возраст брата составляет 40% от возраста сестры. Сколько процентов составляет возраст сестры от возраста брата?
- Влажность купленного арбуза составила 99%. В результате длительного хранения влажность снизилась до 98%. Как изменилась влажность арбуза?
- Двое путников одновременно вышли из пункта А по направлению к пункту В. Шаг второго был на 20% короче, чем шаг первого, но зато второй успевал за то же время сделать на 20% шагов больше, чем первый. Сколько времени потребовалось второму путнику для достижения цели, если первый прибыл в пункт В спустя 5 часов после выхода из пункта А?
Знакомство с логикой: «все», «некоторые», отрицание
Что изучает логика. Исторический очерк. Понятие, суждение, умозаключение. Высказывания. Утверждения. Отрицание как логическая операция. Квантор.
Умение логически грамотно рассуждать является важным для каждого человека, а не только для избранных. Несмотря на то, что весь школьный курс математики пронизан логическими идеями, но наиболее важные или специальные приемы логических рассуждений заслуживают особого внимания.
Тема посвящена образованию отрицательных утверждений, в которых используются слова «все», и «некоторые». На языке математики «все» соответствует квантору общности, «некоторые» - квантору существования.
Примеры заданий:
- Скажите то же самое по-другому:
а) Неверно, что все млекопитающие живут на суше.
б) Неверно, что 5 делится на 2.
в) Неверно, что некоторые рыбы летают.
- Построить отрицание предложений с помощью слова неверно и в более простой форме.
а) Сегодня будет солнечно.
б) Все собаки любят кошек.
в) Курица - домашняя птица.
г) Весной снег всегда тает.
д) 150 меньше 200.
е) Математика - точная наука.
- Придумать свои предложения и построить их отрицание.
- Доказать, что высказывание является ложным и построить его отрицание:
а) Число 0 является натуральным.
б) Между числами 4 и 5 нет натуральных чисел.
в) Неправильная дробь меньше единицы.
Сумма и среднее арифметическое.
Понятия «среднее арифметическое», вывод соответствующих формул, изучение понятий «средняя скорость» и «средняя масса» и методы их нахождения; умение применять знания в практических задачах; закрепление арифметических действий с десятичными дробями.
Примеры задач:
- Человек шел 2 ч со скоростью 4,6км/ч и 3 ч со скоростью 5,1 км/ч. С какой постоянной скоростью он должен был идти, чтобы пройти то же расстояние за то же время?
- У Иванова Ивана по математике в журнале стоят оценки 4 5 3 4 5 4 3 3 4. Как вы думаете, какую оценку в четверти получит Иван? И почему?
- Миша, Петя и Коля были в походе. Подойдя к лесу, они решили сделать привал. У Миши было 2 пирожка, у Пети 4 и у Коли 6. Все пирожки мальчики разделили поровну и съели. Сколько пирожков съел каждый?
Задачи на четность (чередование, разбиение на пары).
Понятие четности. Применение идеи четности: известные утверждения. Четность суммы и разности нескольких чисел. Идея «разбиения на пары».
Задачи, в которых используется понятие четности встречаются очень часто. Поэтому желательно познакомить школьников с подходами к решению этих задач. Задачи естественным образом разбиваются на три цикла:
- Разбиение на пары.
Если предметы разбиты на пары, то их четное число. Следовательно, если из нечетного числа предметов образовано несколько пар, то, по крайней мере, один предмет остался без пары. Для решения таких задач нужно в каждом случае увидеть, что именно и на какие пары разбивается.
- Чередование.
Если из предметов двух сортов образована цепочка, в которой соседние предметы разных сортов, то на всех четных местах стоят предметы одного сорта, а на всех нечетных - другого. Отсюда вывод: предметов одного сорта на один больше, чем предметов другого сорта в случае, когда длина цепочки нечетна и предметов обоих сортов поровну, тогда длина цепочки четна.
- Чет - нечет.
Решение задач основано на простом наблюдении: сумма четного числа нечетных чисел - четна. Обобщение этого факта: четность суммы нескольких чисел зависит лишь от четности числа нечетных слагаемых: если количество нечетных слагаемых (не)четно, то и сумма - (не)четна.
Примеры задач:
- За круглым столом сидят мальчики и девочки. Докажите, что количество пар
соседей разного пола чётно.
- Шахматный конь вышел с поля а1 и через несколько ходов вернулся на него. Докажите, что он сделал чётное число ходов.
- Может ли прямая не содержащая вершин замкнутой 11-звенной ломаной, пересекать все ее звенья?
- На хоккейном поле лежат три шайбы A, B и C. Хоккеист бьет по одной из них так, что она пролетает между двумя другими. Так он делает 1999 раз. Могут ли после этого все шайбы остаться на исходных местах?
- На клетчатой бумаге нарисован замкнутый путь, идущий по линиям сетки. Может ли он иметь длину 1999? А длину 2000?
- Все костяшки домино выложили в цепь по правилам. На одном конце оказалось 5 очков. Сколько очков оказалось на другом?
- Из набора домино выбросили все кости с «пустышками». Можно ли
оставшиеся кости выложить в ряд по правилам?
- На доске 25 х 25 расставлено 25 шашек, причём их расположение
симметрично относительно диагонали. Докажите, что одна из шашек расположена на диагонали.
«Обходы».
Примеры задач.
- а) Расположите на плоскости 6 точек и соедините их
непересекающимися линиями так, чтобы из каждой точки выходили 4 линии.
б) проведите 6 прямых и отметьте на них 7 точек так, чтобы на каждой прямой было ровно три из отмеченных точек.
- а) Художник-авангардист нарисовал картину “Контур квадрата и его диагональ”. Мог ли он нарисовать свою картину, не отрывая карандаша от бумаги и не проводя никакую линию дважды?
б) А если его картина называлась “Контур квадрата и его диагонали”?
- а) Зачеркните 9 точек, изображенных на левом рисунке, четырьмя отрезками, не отрывая карандаша от бумаги и не проводя никакую линию дважды.
- б) 13 точек, изображенных на правом рисунке, пятью отрезками, не отрывая карандаша от бумаги и не проводя никакую линию дважды.
- Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?
- а) 20 команд сыграли турнир по олимпийской системе (встречаются две команды, победитель играет дальше, проигравший выбывает). Сколько всего было сыграно матчей?
- б) а если турнир проходил по круговой системе в один круг? (каждая команда играет с каждой один раз).
- Дима, приехав из Врунляндии, рассказал, что там есть несколько озер, соединенных между собой реками. Из каждого озера вытекают три реки, и в каждое озеро впадают четыре реки. Докажите, что он ошибается.
Задачи на взвешивания.
Задачи на взвешивание - достаточно распространённый вид математических задач. В таких задачах от решающего требуется локализовать отличающийся от остальных предмет по весу за ограниченное число взвешиваний. Поиск решения в этом случае осуществляется путем операций сравнения, правда, не только одиночных элементов, но и групп элементов между собой.
Примеры задач:
У Буратино есть 27 золотых монет. Но известно, что Кот Базилио заменил одну монету на фальшивую, а она по весу тяжелее настоящих. Как за три взвешивания на чашечных весах без гирь Буратино определить фальшивую монету?
Мачеха послала Золушку на рынок. Дала ей девять монет: из них 8 настоящих, а одна фальшивая - она легче чем настоящая. Как найти ее Золушке за два взвешивания?
Имеется 8 монет. Одна из них фальшивая и легче настоящей монеты. Определите за 3 взвешивания какая из монет фальшивая.
Текстовые задачи на совместную работу.
Понятие производительности, работы, времени работы. Формулы, связывающие производительность, время и работу для случая, когда работа обозначена 1. Задачи на нахождение совместной и личной производительности и времени. Задачи, когда работа выражается натуральным или дробным числом. Нестандартный подход к нахождению общей производительности.
Примеры задач:
Через одну трубу бассейн наполняется за 7 часов, а через другую
опустошается за 8 часов. За какое время бассейн будет наполнен, если открыть обе трубы?
Примеры и конструкции. Примеры задач:
Среди четырёх людей нет трёх с одинаковым именем, или с
одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?
Закрасьте некоторые клетки квадрата 4х4 так, чтобы любая
закрашенная клетка имела общую сторону ровно с тремя незакрашенными.
Составьте из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 магический квадрат, то есть разместите их в таблице 3х3 так, чтобы суммы чисел по строкам, столбцам и двум диагоналям были одинаковы.
Как расположить 16 шашек в 10 рядов по 4 шашки в каждом ряду? Как
расположить 9 шашек в 10 рядов так, чтобы в каждом ряду было по 3 шашки? (ряд - это несколько шашек, лежащих на одной линии)
При делении числа 2*3=6 на 4 получаем в остатке 2. При делении числа 3*4=12 на 5 получаем в остатке 2. Верно ли, что остаток от деления произведения двух последовательных чисел на число, следующее за ними, всегда равен 2?
Логические задачи.
Среди задач на сообразительность особый интерес представляют логические задачи. Если для решения задачи требуется лишь логически мыслить и совсем не нужно производить арифметические выкладки, то такую задачу обычно называют логической. При решении подобных задач решающую роль играет правильное построение цепочки точных, иногда очень точных рассуждений.
На первом этапе целесообразно рассмотреть три широко распространенных типа логических задач:
- Задачи, в которых на основании серии посылок, сообщающих те или иные сведения о действующих лицах, требуется сделать определенные выводы.
- Задачи о «мудрецах».
- Задачи о лжецах и тех, кто всегда говорит правду.
Повторение. Математическое соревнование.
По окончании цикла занятий проводится обобщающее занятие, в рамках которого проходит повторение изученного материала, а также проводится один из видов математического соревнования, который наиболее подходит для организации работы со школьниками, занятыми во внеурочной деятельности. Это может быть математический КВН, математический аукцион, математическая регата, игра по станциям, математический хоккей, математическое лото, мозговая атака и другие формы работы.
Итоговая олимпиада проводится как форма итогового занятия по освоению программы, определяющего объективный уровень знаний и умений учащихся, полученных в результате участия во внеурочной деятельности по математике. Мероприятие проводится по правилам проведения классической олимпиады по математике. Вариант работы составляется учителем. В работу включаются задания, которые были предметом обсуждения на занятиях внеурочной деятельности.
МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ
Методической особенностью изложения учебных материалов на занятиях является такое изложение, при котором новое содержание изучается на задачах. Метод обучения через задачи базируется на следующих дидактических положениях:
* наилучший способ обучения учащихся, дающий им сознательные и прочные знания и обеспечивающий одновременное их умственное развитие, заключается в том, что перед учащимися ставятся последовательно одна за другой посильные теоретические и практические задачи, решение которых даёт им новые знания;
- с помощью задач, последовательно связанных друг с другом, можно ознакомить учеников даже с довольно сложными математическими теориями;
- усвоение учебного материала через последовательное решение задач происходит в едином процессе приобретения новых знаний и их немедленного применения, что способствует развитию познавательной самостоятельности и творческой активности учащихся.
Большое внимание уделяется овладению учащимися математическими методами поиска решений, логическими рассуждениями, построению и изучению математических моделей.
Для поддержания у учащихся интереса к изучаемому материалу, их активность на протяжении всего занятия необходимо применять дидактически игры - современному и признанному методу обучения и воспитания, обладающему образовательной, развивающей и воспитывающей функциями, которые действуют в органическом единстве. Кроме того, на занятиях математического кружка необходимо создать "атмосферу" свободного обмена мнениями и активной дискуссии.
Исторический материал и работа с информацией входят в процесс обучения математике и в урочной деятельности, поэтому в рамках занятий внеурочной работы с учащимися рекомендуется при любой возможности мотивировать учащихся на занятия математикой очерками об истории математики, историями из жизни великих математиков, сведениями из достижений современной математической науки, т.е. самым широким образом популяризировать математику. Что касается работы с информацией, то любая встреча с математикой, точнее, с учебными задачами по математике непосредственно связана с «работой с информацией».
Содержание программы внеурочной деятельности связано с программой по предмету «математика» и спланировано с учетом прохождения программы 5 класса.
С другой стороны, следует учитывать, что реализация программы по внеурочной деятельности позволяет устранить противоречия между требованиями программы предмета «математика» и потребностями учащихся в дополнительном материале по математике и применении полученных знаний на практике; условиями работы в классноурочной системе обучения математике и потребностями учащихся реализовать свой творческий потенциал. Одна из основных задач образования ФГОС второго поколения - развитие способностей ребенка и формирование универсальных учебных действий, таких как: целеполагание, планирование, прогнозирование, контроль, коррекция, оценка, саморегуляция. С этой целью в программе должно быть предусмотрено значительное увеличение активных форм работы, направленных на вовлечение учащихся в динамическую деятельность, на обеспечение понимания ими математического материала и развития интеллекта, приобретение практических навыков самостоятельной деятельности.
Важно отметить, что количество часов, отводимых на реализацию программы невелико-34 часа в год, каждый учащийся должен «попробовать» и почувствовать вкус к тем или иным видам задач и сформировать относительно устойчивое умение решать эти задачи. Поэтому содержание программы устроено таким образом, что в рамках курса те или иные тематические разделы математики чередуются, естественно при этом темы не повторяются: элементы геометрии, логические задачи, текстовые задачи и т.д.
Замечательно, если постепенное освоение программы будет логично вписываться в общешкольные мероприятия, районные и городские мероприятия по математике: математические регаты, конкурсы, конференции и т.д.
С целью достижения качественных результатов желательно, чтобы занятия были оснащены современными техническими средствами, средствами изобразительной наглядности, игровыми реквизитами. С помощью мультимедийных элементов занятие визуализируется, вызывая положительные эмоции у обучающихся и создавая условия для успешной деятельности каждого ребёнка.
Эффективность и результативность программы внеурочной деятельности зависит от соблюдения следующих условий:
- добровольность участия и желание проявить себя;
- сочетание индивидуальной, групповой и коллективной деятельности;
- сочетание инициатива детей с направляющей ролью учителя;
- занимательность и новизна содержания, форм и методов работы;
- эстетичность всех проводимых мероприятий;
- чёткая организация и тщательная подготовка всех запланированных
- мероприятий;
- наличие целевых установок и перспектив деятельности, возможность
- участвовать в конкурсах, олимпиадах и проектах различного уровня;
- широкое использование методов педагогического стимулирования
- активности учащихся;
- гласность, открытость, привлечение детей с разными способностями и
- уровнем овладения математикой.
ЛИТЕРАТУРА
Основная
- Анфимова Т.Б. Математика. Внеурочные занятия. 5-6 классы. - М.: Илекса, 2019.
- Вакульчик П.А. Сборник нестандартных задач. - Минск: БГУ, 2001.
- Генкин С.А., Итенберг И.В., Фомин Д.В. Математический кружок. Первый год. - Л.: С-Петербургский дворец творчества юных, 2019
- Екимова М.А., Кукин Г.П. задачи на разрезание. - М.: МЦНМО, 2015.
- Игнатьев Е.И. В царстве смекалки. - М.: Наука, 1979.
- Канель-Белов А.Я., Ковальджи А.К. Как решают нестандартные задачи. - М.: МЦНМО, 2015.
- Математический кружок. Первый год обучения, 5-6 классы (Коллектив авторов). - М.: Изд. АПН СССР, 1991.
- Руденко В.Н., Бахурин Г.А., Захарова Г.А. Занятия математического кружка в 5 классе. - М.: Изд. дом «Искатель», 1999.
- Спивак А.В. Математический кружок. 6-7 классы. - М.: Посев, 2013.
- Спивак А.В. Математический праздник. - М.: МЦНМО, 1995.
- Столяр А. А. Зачем и что мы доказываем в математике. - Минск: Народная асвета, 2017.
- Шарыгин И.Ф., Шевкин А.В. Математика. Задачи на смекалку. 5-6 кл. - М.: Просвещение, 2011.
- Шейкина О.С., Соловьева Г.М. Математика. Занятия школьного кружка. 5-6 кл. - М.: НЦ ЭНАС, 2013.
Дополнительная
- Спивак А.В. Математический кружок. - М.: МЦНМО, 2015.
- Гарднер М. А ну-ка догадайся! - М.: Мир, 1984.
- Гарднер М. Есть идея! - М.: Мир, 1982.
- Гарднер М. Крестики-нолики. - М.: Мир, 1988.
- Гарднер М. Математические головоломки и развлечения. - М.: Мир, 1971.
- Гарднер М. Математические досуги. - М.: Мир, 1972.
- Гарднер М. Математические новеллы. - М.: Мир, 1974.
- Гарднер М. Путешествие по времени. - М.: Мир, 1990.
- Гик Е.Я. Замечательные математические игры. - М.: Знание, 1987.
- Гусев В.А., Орлов А.И., Розенталь А.Л. Внеклассная работа по математике в 6-8 классах. - М.: Просвещение, 1984.
- Кноп К. А. Взвешивания и алгоритмы: от головоломок к задачам. - М., МЦНМО, 2011.
- Кордемский Б.А. Математическая смекалка. - М., ГИФМЛ, 1958.
- Линдгрен Г. Занимательные задачи на разрезание. - М.: Мир, 1977.
- Пойа Д. Как решать задачу. - М.: Учпедгиз, 1961.
- Пойа Д. Математика и правдоподобные рассуждения. - М.: Наука, 1975.
- Пойа Д. Математическое открытие. - М.: Наука, 1970.
- Радемахер Г.Р., Теплиц О. Числа и фигуры. - М.: Физматгиз, 1962.
- Смаллиан Р. Алиса в стране Смекалки - М.: Мир, 1987.
- Смаллиан Р. Как же называется эта книга? - М.: Мир, 1981.
- Смаллиан Р. Принцесса или тигр? - М.: Мир, 1985.
- Смыкалова Е.В. Необычный урок математики. - СПб.: СМИО Пресс, 2007.
- Уфнаровский В.Л. Математический аквариум. - Кишинев: Штиинца, 1987.
- Фарков А.В. Математические олимпиады: методика подготовки 5-8 классы. - М.: ВАКО, 2012.
- Агаханов Н. X. Математика. Районные олимпиады. 6—11 классы / Агаханов Н.Х., Подлипский О.К. — М.: Просвещение, 2010.
Примерные темы учебных проектов
5 класс
- Сумма углов треугольника на плоскости и на конусе.
- Совершенные числа.
- Четыре действия математики.
- Древние меры длины.
- Возникновение чисел.
- Счёты.
- Старинные русские меры или старинная математика.
- Магические квадраты.
- 10.38 попугаев или как измерить свой рост.
- 7 или 13? Какое число счастливее?
- Великие женщины-математики.
- Великие задачи.
- Великолепная семерка.
- Величайший математик Евклид.
- Веселые задачки.
- Веселый урок для пятиклассников.
- Весёлые задачки для юных рыбаков.
- Витамины и математика.
- Единицы измерения длины в разных странах и в разное время.
- Жизнь нуля - цифры и числа.
- Задачи-сказки.
- Задачник "Эти забавные животные".
- Закодированные рисунки.
- Замечательная комбинаторика.
- Математика в играх.
- Мое любимое занятие - шашки.
- Число в русском народном творчестве.
- Число и числовая мистика.
- Число, которое больше Вселенной.
- Числовые великаны.
- Числовые забавы.
- Числовые суеверия.
Календарно-тематическое планирование
№ п/п | Тема | Дата |
1 | Нулевой цикл «Знакомство» | |
2 | Нулевой цикл «Знакомство» | |
3 | Сюжетные задачи, решаемые с конца | |
4 | Сюжетные задачи, решаемые с конца | |
5 | «Переправы» | |
6 | Числовые ребусы | |
7 | Геометрия: задачи на разрезание | |
8 | Геометрия: задачи на разрезание | |
9 | Повторение. Математическое соревнование | |
10 | Пересечение и объединение множеств. Круги Эйлера | |
11 | Задача Пуассона (задачи на переливания) | |
12 | Задача Пуассона (задачи на переливания) | |
13 | Геометрия: лист Мебиуса | |
14 | Занимательные задачи на проценты | |
15 | Занимательные задачи на проценты | |
16 | Знакомство с логикой: «все», «некоторые», отрицание | |
17 | Сумма и среднее арифметическое | |
18 | Повторение. Математическое соревнование | |
19 | Задачи на четность: чередование | |
20 | Задачи на четность: чередование | |
21 | «Обходы» | |
22 | «Обходы» | |
23 | «Взвешивания» | |
24 | «Взвешивания» | |
25 | Сюжетные задачи на совместную работу | |
26 | Сюжетные задачи на совместную работу | |
27 | Задачи на четность: разбиение на пары | |
28 | Примеры и конструкции | |
29 | Логические задачи | |
30 | Логические задачи | |
31 | Повторение | |
32 | Итоговая олимпиада | |
33 | Итоговая олимпиада | |
34 | Заключительное занятие |
По теме: методические разработки, презентации и конспекты
рабочая программа факультатива по русскому языку 6 класс
Полная рабочая программа факультатива с тематическим планированием....
Рабочая программа факультатива «Избранные вопросы информатики» 11 класс
Рассматриваются вопросы ЕГЭ 11 класс....
Рабочая программа факультатива по физике в 10 классе " Методы решения физических задач"
Данный материал содержит рабочую программу для факултативных занятий по физике в 10 класса. Решение задач является одним из основных методов обучения физики. Материал содержит развернутое тематическое...
программа факультатива по литературе 8 класс
факультатив...
Рабочая программа факультатива "Обществознание " 9 класс
Эта программа расчитана на подготовку учеников к экзамену по обществознанию для 9 класса....
Программа факультатива для 9 класса по химии «Решение задач повышенной сложности»
Программа факультатива рассчитана на 34 часов (1 час в неделю). Рассматриваются основные темы, необходимые для успешной сдачи ГИА в 9 классе....
Программа факультатива по говорению и английской грамматике для 7-9 классов
Новые политические, социально-экономические и культурные реалии в России требуют расширения функций иностранного языка как учебного предмета. У школьников все чаще появляется необходимость использоват...