Проценты
учебно-методический материал (5 класс) на тему
Представлен материал по теме "Проценты" для занятий математического кружка в 5 классе
Скачать:
Вложение | Размер |
---|---|
protsenty.doc | 115 КБ |
Предварительный просмотр:
Проценты.
Как возникли проценты.
Сотую долю числа называют процентом числа и обозначают знаком %.
Это понятие появилось в математике в связи с развитием торговли, когда за взятые в долг деньги заимодавец получал с должника какую-либо сумму сверх долга. Обычно эта сумма выражалась в сотых долях. Несколько позже у неё появилось название - проценты.
Слово "процент" произошло от двух латинских слов: "про" - "на" и "центум" - "сто", то есть в буквальном переводе на русский язык процент означает "на сто".
Знак % закрепился для обозначения процентов в XVII веке. Вероятно, он произошел от сокращения латинского слова "centum" в "cto". При скорописи "cto" стало выглядеть как "о/о", а затем - "%". Отсюда путем дальнейшего упрощения в скорописи буквы t в наклонную черту произошел современный символ для обозначения процентов.
1%=0,01
До нас дошли таблицы процентов, составленные ещё вавилонянами. Эти таблицы позволяли быстро определить сумму процентных денег.
Были известны проценты и в Индии. Индийские математики вычислили проценты, применяя так называемое тройное правило. Например, при расчете 5% от 830 записывали:
1% составляет 830/100, 5% составляют (830∙5)/100= 41,5
Они производили и более сложные вычисления.
В Древнем Риме были широко распространены денежные расчеты с процентами. Римский сенат установил максимально доступный процент, взимавшийся с должника.
В Европе в середине века расширилась торговля и, следовательно, особое внимание обращалось на умение вычислять проценты. Тогда приходилось рассчитывать не только проценты, но и проценты с процентов (сложные проценты). Часто конторы и предприятия для облегчения расчетов разрабатывали особые таблицы вычисления процентов. Эти таблицы держались в тайне, составляли коммерческий секрет фирмы.
Впервые таблицы были опубликованы в 1584 году Симоном Стевином - инженером из города Брюгге (Нидерланды). Он известен различными научными открытиями, а также применением особой записи десятичных дробей.
Долгое время под процентами понимались исключительно прибыль или убыток на каждые 100 рублей. Они применялись только в торговых и денежных сделках. Затем область их применения расширилась, проценты встречаются в хозяйственных и финансовых расчетах, статистике, науке и технике.
Задачи на простые проценты
Понимание процентов и умение проводить процентные расчеты в настоящее время необходимо каждому человеку.
Само определение процента позволяет легко решить простейшую задачу на проценты: найти заданное число процентов от заданной величины.
От дохода в 350 тысяч рублей:
а) 1% составляет 350 000 : 100 = 3500 р.;
б) 12% составляют 3500∙12=42000р.
Другими словами, для нахождения заданного числа р процентов от заданной величины S можно сделать два шага:
- Найти сначала один процент — он равен .
- Полученный результат умножить на р, получится .
Проценты при расчете зарплаты
- Подоходный налог в городе N установлен в размере 13%. До вычета подоходного налога 1% от заработной платы отчисляется в пенсионный фонд. Работнику начислено 50 000 р. Сколько он получит после указанных вычетов?
Решение:
За 100% приняты 50 000 р., начисленные работнику.
1) 50000/100=500 (руб.) – составляет 1%, который отчисляется в пенсионный фонд
2) 50000-500=49500 (руб.) – после отчисления в пенсионный фонд
3) За 100% - 49 500 руб.
49500/100=495 (руб.) – составляет 1%
4) 495*13=6435 (руб.) - подоходный налог
5) 49500-6435=43065(руб.)- работник получит после указанных вычетов
Ответ: 43065 руб. работник получит после указанных вычетов
- Какой будет заработная плата после повышением ее на 65%, если до повышения она составляла 10000 р.?
Решение:
1) 10000/100=100 (руб.) - составляет 1%
2) 100*65=6500- повышение в рублях
3) 10000+6500=16500-зарплата после повышения
ОТВЕТ: 16500 рублей.
- Человек обычно получает за работу «чистыми», т.е. после вычета налога в 13%, но ему интересно узнать, сколько же «по-настоящему» стоит сделанная им работа, если он получил 10877,3 р.
Решение:
- 100-13=87 (%) – получает человек, после вычета налога
- 10877,3/87≈125,026 (руб.) - составляет 1%
- 125,02643*100≈12502,6 (руб.)
Ответ: 12502,6 руб. «по-настоящему» стоит сделанная работа
Проценты и прибыль
- Три человека организовали собственное предприятие и договорились, что первый из них будет получать третью часть прибыли, двое других по 20%, а остальные деньги они будут вкладывать в развитие своего предприятия. Сколько процентов от прибыли они будут вкладывать в развитие предприятия?
Решение:
Вся прибыль – 100%
1) 100/3=33,3% третья часть прибыли, получает первый предприниматель в процентах.
2) 20+20+33=73 (%) - от прибыли получают все предприниматели
3) 100-73=27% - от прибыли они будут вкладывать в развитие предприятия
Ответ: 27% от прибыли они будут вкладывать в развитие предприятия
Проценты в магазине
- В течение недели магазин получил 60 000 р. дохода. Из них 15 000 р. от продажи продовольственных товаров. Сколько процентов составил доход от продажи непродовольственных товаров?
Решение:
За 100% принят доход – 60 000 рублей.
1) 60000:100=600(руб.) – составляет 1%
2) 60000-15000=45000 (руб.)- доход от непродовольственных товаров
В) 45000:600=75%
ОТВЕТ: 75% составил доход от продажи непродовольственных товаров?
Проценты в окружающем нас мире:
Распродажи
Задача Зонт стоил 360 р. В ноябре цена зонта была снижена на 15% , а в декабре — еще на 10% . Какой стала стоимость зонта в декабре?
Решение. Стоимость зонта в ноябре составляла 85% от 360 р., то есть 360 • 0,85 - 306 (р.). Второе снижение цены происходило по отношению к новой цене зонта; теперь следует искать 90% от 306 р., то есть 306-0,9 = 275,4 (р.).
Ответ: 275р. 40 к.
Решение. Найдем отношение последней цены к исходной и выразим его в процентах. Получим 76,5%. Значит, зонт подешевел на 23,5% .
Тарифы
Задача В газете сообщается, что с 10 июня согласно новым тарифам стоимость отправления почтовой открытки составит Зр. 15 к. вместо 2р. 75 к. Соответствует ли рост цен на услуги почтовой связи росту цен на товары в этом году, который составляет 14,5%>?
Решение. Разность тарифов составляет 0,4 р., а ее отношение к старому тарифу равно 0,14545. Выразив это отношение в процентах, получим примерно 14,5%.
Ответ: да, соответствует.
Дополнительный вопрос. Сколько будет стоить отправка заказного письма, если сейчас эта услуга оценивается в 5 р. 50 к.?
Ответ: 6 р. 30 к.
Штрафы
Задача Занятия ребенка в музыкальной школе родители оплачивают в Сбербанке, внося ежемесячно 250 р. Оплата должна производиться до 15-го числа каждого месяца, после чего за каждый просроченный день начисляется пеня в размере 4% от суммы оплаты занятий за один месяц. Сколько придется заплатить родителям, если они просрочат оплату на неделю?
Решение. Так как 4% от 250р. составляют Юр., то за каждый просроченный день сумма оплаты будет увеличиваться на 10 р. Если родители просрочат оплату на один день, то им придется заплатить 250 + 10 = = 260 (р.), на неделю — 250 + 10 • 7 = 320 (р.).
Ответ: 320 р.
Банковские операции
Задача. За хранение денег Сбербанк начисляет вкладчику 8% годовых. Вкладчик положил на счет 5000 р. и решил в течение пяти лет не снимать деньги со счета и не брать процентные начисления. Сколько денег будет на счете вкладчика через год? через два года? через пять лет?
Решение. Способ I. Так как 8% от 5000 р. составляют 400р., то через один год на счете окажется 5000 + 400 = 5400 (р.). В конце второго года банк будет начислять проценты уже на новую сумму. Так как 8% от 5400 р. составляют 432 р., то через два года на счете окажется 5400 + 432 = 5832 (р.). Вычисляя последовательно, найдем, что через пять лет на счете вкладчика будет 7346 р. 64 к.
Способ II. Через год начальная сумма вклада увеличивается на 8%, значит, новая сумма составит от первоначальной 108%. Таким образом, через год
= 1,08 раза и составит 5000 • 1,08 (р.). Еще через год образовавшаяся на счете сумма снова увеличится в 1,08 раза. Таким образом, через два года на счете будет (5000 • 1,08) • 1,08 = 5000 -1,082 (р.).
Аналогично, через три года 5000 • 1,083 (р.). и т.д. Теперь видно, что вклад растет в геометрической прогрессии, и через пять лет сумма на счете вкладчика составит 5000 • 1,085 (р.), то есть 7346,64 р.
Голосование
Задача. Из 550 учащихся школы в референдуме по вопросу о введении ученического совета участвовали 88% учащихся. На вопрос референдума 75% принявших участие в голосовании ответили «да». Какой процент от числа всех учащихся школы составили те, кто ответил положительно?
Решение. Выразим проценты дробями и найдем число учащихся, утвердительно ответивших на вопрос референдума: 550 • 0,88 • 0,75 = 363 (чел.). Теперь найдем ответ на вопрос задачи: - =0,66 — это 66%
Список литературы
- Г. В. Дорофеев, Е. А. Седова. Процентные вычисления. – М.: Дрофа, 2003 г.
- А. П. Савин. Для чего нужны проценты // Квант. 1986. №2
- А. С. Симонов. Проценты и банковские расчеты // Математика в школе. 1998. №4
По теме: методические разработки, презентации и конспекты
Проценты. Задачи на проценты
Это презентация для самостоятельного изучения или повторения данной темы. Применима для учащихся 5-6 классов. Содержит в себе примеры и задания для самостоятельного выполнения....
Проценты. Нахождение процентов от числа
Методическая разработка урока математики в 5 классе по теме "Проценты. Нахождение процентов от числа"....
МЕТОДИЧЕСКАЯ РАЗРАБОТКА по математике "Проценты. Методика решения задач различных типов на проценты."
МЕТОДИЧЕСКАЯ РАЗРАБОТКА по математикена тему:«Проценты. Методика решения задач различных типов на проценты»Обобщение методики изучения процентов. Решение задач при подготовке к ГИА и ...
Презентация к уроку "Проценты" в 5 классе. Материал полезен и для повторения темы проценты и 6 классе и в 9 классе по подготовке к ГИА. Разобраны все типы задач. Приведены образцы решения двумя способами.
Материал подготовлен для учащихся 5 класса для изучения темы "Проценты". Так же эти слайды будут полезны для повторения этой темы в 6 классе, и для подготовки к ГИА в 9 классе. Здесь разобраны все тип...
Программа элективного курса "Проценты, сложные проценты. Смеси и сплавы"
Рабочая программа данного предметно-ориентированного элективного курса расчитана на решение практических задач по теме "Проценты, сложные проценты", что способствует:1.подготовке к успешной...
Урок математики в 5 классе по теме "Проценты. Решение задач на проценты"
Обобщающий урок математики в 5 классе по теме "Проценты. Решение задач на проценты"...
разработка урока "Проценты. Основные задачи на проценты"
Краткое изучение темы «Проценты» в 5 классе не дает больших результатов. Учащиеся в силу возрастных особенностей еще не могут полноценное представления о процентах, об их роли в повседневной жизни. На...