«Методические особенности изучения истории математики как важная часть математического образования ».
методическая разработка по математике

Данная разработка была предназначена для выступления на ГМО. Может использоваться на уроках  математики, а также как материал для создания интересных уроков.

Скачать:


Предварительный просмотр:

«Методические особенности изучения истории математики как важная часть математического образования ».

Введение

Данная тема с давних времен волновала многих ученых из различных областей знаний: математики, методики математики, педагогики, истории, т.к. является пограничной и находиться на стыке этих наук. Эту тему рассматривали математики, педагоги, историки: К. Д. Ушинский, Н.Г.Чернышевский, Л.Н.Толстой, Ж.А. Пуанкаре, А.К.Маркова, С.Н.Лысенкова, Л.С. Выготский, Г.В.Лейбниц ....

- Кто хочет ограничиться настоящим, без знания прошлого, тот никогда его не поймет.

Готфрид Вильгельм Лейбниц

(немецкий философ, математик)

Современная школьная программа и ФГОС указывают на необходимость знакомства учеников с фактами из истории математики и биографиями великих математиков. Но как и в какой форме это лучше делать, решать приходится каждому учителю самостоятельно.

Современное развитие математики требует того, чтобы ее преподавание не только обеспечивало прочное овладение учащимися основами математики, но и развивало у них умение применять накопленные знания к решению практических задач. Одним из приемов решения этой проблемы может служить использование на уроках м6атематики исторических сведений, которые показывают становление и развитие математики.

Как лучше это сделать и когда – вот главный вопрос любого учителя, так как нужно учитывать многие моменты: успеть пройти всю программу, выполнить все контрольные и самостоятельные работы, проверить как можно больше тетрадей с домашними работами, тестами и самостоятельными, участвовать в олимпиадах и различных конкурсах, и еще не забывать о возрастных особенностях каждого класса и ребенка.

В разное время ученые и методисты по-разному определяли цели введения элементов истории математики в преподавание в зависимости от общественного строя той или иной страны и общих задач школы. Однако общим всегда были и остаются следующие цели:

  1. Сведения из истории повышают интерес школьников к изучению математики и углубляют понимание ими изучаемого раздела программы;
  2. Ознакомление с историческими фактами расширяет умственный кругозор учеников и повышает их общую культуру, позволяет лучше понять роль математики в современном обществе;
  3. Знакомство с историческим развитием математики способствует общим целям воспитания подрастающего поколения.

Знакомство учеников с фрагментами истории математики, в связи с изучением основ предмета на уроках, актуально и в настоящее время. Перед учителем возникает проблема. На каком этапе урока лучше использовать введения элементов истории математики в преподавание, в какой форме лучше преподнести, какие условия следует учитывать… Поэтому была определена данная тема для изучения и намечены цели и задачи.

Цель: рассмотреть методические особенности изучения истории математики как важной части математического образования.

Задачи:

  1. Изучить педагогические условия использования исторического материала на уроках математики.
  2. Рассмотреть научно- практические рекомендации по использованию исторического материала.
  3. Определить этапы и виды работы при использовании исторического материала на уроках математики.
  4. Показать способы использования исторического материала, отражающего становление и развитие математики на примере фрагментов урока.

Основная часть

Педагогические условия использования исторического материала на уроках математики

1)Определяется содержанием материала. Исторический материал органически связан с изучаемой темой.

2)Учитываются возрастные особенности школьника.

3)Объем исторических сведений должен быть соразмерным.

4) Использование исторического материала не противоречит принципам доступности и научности.

Принцип научности. Состоит в том, что содержание обучения должно быть научным и иметь мировоззренческую направленность.

Принцип доступности заключается в необходимости соответствия содержания, методов и форм обучения возрастным особенностям обучающихся, уровню их развития.

Научно- практические рекомендации по использованию исторического материала

  • Прежде чем знакомить учеников с историей математики, продумайте планомерное использование на уроках фактов из истории математики в тесном сплетении с систематическим изложением программного материала;
  • Проводите ознакомление учеников с историческим материалом не только на уроках математики, но и во внеурочное время с помощью продуманной системы внеурочных мероприятий;
  • Используйте на уроках различные формы сообщения сведений по истории: краткую беседу, экскурсию, лаконическую справку, решение задач, показ и разъяснение рисунка и т.д.
  • Не требуйте от детей запоминания исторических сведений. Добивайтесь того, что математика связана с жизнью;
  • Используйте исторический материал на уроках с учетом возрастных особенностей; переводите новую информацию на доступный для учащихся язык.

Как показывает педагогическая практика и анализ методической литературы по педагогике, что основными методическими приемами при сообщении исторического материала являются следующие: рассказ учителя, эвристическая беседа, проблемное изложение, лекция, исследовательская работа учащихся, экскурс, лаконичная справка, решение задачи, показ и разъяснение рисунка.

Этапы и виды работы при использовании исторического материала на уроках математики

В 5-6-х классах, когда ученики еще не знакомы со многими элементами алгебры и геометрии, знакомство с историей можно разбить на несколько этапов или видов работы.

  1. Поиск интересных фактов из жизни великих математиков. (достижения математиков могут быть ими еще не поняты, но знакомство с именами ученых будет полезно и интересно ).
  2. Поиск информации о первом использовании привычных для нас современных символов, знаков, обозначений в математике.
  3. Изучение биографий великих ученых в виде сообщений учеников, выполнение стенгазет, презентаций, буклетов и т.п.
  4. Изготовление различных объемных фигур с изучением их названий, истории открытия, существование их природных аналогов.
  5. Поиск и решение интересных исторических задач.

В 7-9 классах, где уже начали изучать алгебру и геометрию, объем знаний и информации намного шире, и материалов по математике больше. Использовать можно и весь потенциал 5-6 классов, но слегка расширив его по возрасту.

  1. Проведение сравнительного анализа старинных учебников и современных ( название старинных учебников, авторов, в зависимости от места и времени проживания и т.д.)
  2. Пифагор и его теорема (Изучение биографии Пифагора: можно группами и по периодам жизни, достижения Пифагора, легенды и притчи, формулировки теоремы, исторические сведения о раннем применении этой теоремы и т.д.)
  3. Евклид, «Начала» ( звучание постулатов Евклида из «Начал» и аксиом планиметрии, их сравнение)
  4. Решение задач старинной формулировки, его современная интерпретация и актуальность умения решать такие задачи.

И только ученикам 10-11 классов можно будет углубиться в достижения великих ученых. Все предыдущие виды работы для них приемлемы, но добавить можно немного, с одной стороны – старшеклассники больше заняты подготовкой к ЕГЭ, с другой стороны – как мотивация их к учебе исторический материал уже не сработает.

  1. Поиск информации о биографии математиков, их достижениях.
  2. Поиск информации об областях математики, где применяются различные открытия и достижения.

Чтобы еще больше усилить интерес к математике и её истории нужен игровой момент, который подведет итог проделанной работе за год и покажет, на сколько мы преуспели в своей миссии. Игру можно провести в конце года или на предметной неделе, обязательно использовать материал, который был найден учениками.

Представляю вашему вниманию фрагменты уроков с 5-11 класс с использованием исторического материала, отражающего становление и развитие математики с обозначением целесообразности применения.

История происхождения дробей, 5-6 кл

Египетские дроби были изобретены и впервые использованы в древнем Египте. Одним из первых известных упоминаний о египетских дробях является математический папирус Ринда. Три более древних текста, в которых упоминаются египетские дроби — это Египетский математический кожаный свиток, Московский математический папирус и Деревянная табличка Ахмима. Папирус Ринда включает таблицу египетских дробей для рациональных чисел вида 2/n, а также 84 математических задачи, их решения и ответы, записанные в виде египетских дробей.

Египтяне ставили иероглиф (ер, «[один] из» или ре, рот) над числом для обозначения единичной дроби в обычной записи, а в священных текстах использовали линию. К примеру:

У них также были специальные символы для дробей 1/2, 2/3 и 3/4, которыми можно было записывать также другие дроби (большие чем 1/2).

Остальные дроби они записывали в виде суммы долей. Дробь они записывали в виде ,но знак «+» не указывали. А сумму записывали в виде . Следовательно, такая запись смешанных чисел (без знака «+») сохранилась с тех пор.

В Британском музее хранится папирус, составленный писцом Ахмесом примерно за 1600-1700 лет до нашей эры.

Одна из задач этого папируса — разделить 7 хлебов между 8 людьми — решается в характерном для всей египетской математики стиле:
каждому проголодавшемуся нужно дать сумму
1/2+1/4+1/8 долей одного хлеба, выраженных аликвотными дробями

Дроби на Руси, 5-6 класс

В русских рукописных арифметиках XVII века дроби называли долями, позднее «ломаными числами». В старых руководствах находим следующие названия дробей на Руси:

1/2 - половина, полтина

1/3 – треть

1/4 – четь

1/6 – полтреть

1/8 – полчеть

1/12 –полполтреть

1/16 – полполчеть

1/24 – полполполтреть (малая треть)

1/32 – полполполчеть (малая четь)

1/5 – пятина

1/7 – седьмина

1/10 – десятина

Данный материал можно использовать на уроке изучения нового материала, так и на уроке закрепления, представив в виде задачи, числового выражения, неравенства или уравнения, используя старинные названия дробей. Кроме этого, можно предложить учащимся самостоятельно или в группе составить задачи.

Умножение способом решётки , 5- 6 кл

В Индии с давних времён предпочитали устный счёт письменному. Были изобретены несколько способов быстрого умножения. Позже их заимствовали арабы, а от них эти способы перешли к европейцам. Те, однако, ими не ограничились и разработали новые, в частности тот, что изучается в школе, — умножение столбиком.


Умножение способом решётки , 5- 6 кл

В Индии были изобретены несколько способов быстрого умножения. Позже их заимствовали арабы, а от них эти способы перешли к европейцам. Однако, ими не ограничились и разработали новые, в частности тот, что изучается в школе, — умножение столбиком.

Этим способом пользовались ещё в древности, в Средние века он широко распространился на Востоке, а в эпоху Возрождения — в Европе. Способ решётки именовали также индийским, мусульманским или «умножением в клеточку». А в Италии его называли «джелозия», или «решётчатое умножение» (gelosia в переводе с итальянского — «жалюзи», «решётчатые ставни»). Действительно, получавшиеся при умножении фигуры из чисел имели сходство со ставнями-жалюзи, которые закрывали от солнца окна венецианских домов.

Суть этого нехитрого способа умножения поясним на примере: вычислим произведение 296 × 73. Начнём с того, что нарисуем таблицу с квадратными клетками, в которой будет три столбца и две строки, — по количеству цифр в множителях. Разделим клетки пополам по диагонали. Над таблицей запишем число 296, а с правой стороны вертикально — число 73. Перемножим каждую цифру первого числа с каждой цифрой второго и запишем произведения в соответствующие клетки, располагая десятки над диагональю, а единицы под ней. Цифры искомого произведения получим сложением цифр в косых полосах. При этом будем двигаться по часовой стрелке, начиная с правой нижней клетки: 8, 2 + 1 + 7 и т.д. Запишем результаты под таблицей, а также слева от неё. (Если при сложении получится двузначная сумма, укажем только единицы, а десятки прибавим к сумме цифр из следующей полосы.) Ответ: 21 608. Итак, 296 x 73 = 21 608.


Способ решётки ни в чём не уступает умножению столбиком. Он даже проще и надёжнее, при том, что количество выполняемых действий в обоих случаях одинаково. Во-первых, работать приходится только с однозначными и двузначными числами, а ими легко оперировать в уме. Во-вторых, не требуется запоминать промежуточные результаты и следить за тем, в каком порядке их записывать. Память разгружается, а внимание сохраняется, поэтому вероятность ошибки уменьшается. К тому же способ решётки позволяет быстрее получить результат. Освоив его, вы сможете убедиться в этом сами.

Почему способ решётки приводит к правильному ответу? В чём заключается его «механизм»? Разберёмся в этом с помощью таблицы, построенной аналогично первой, только в этом случае множители представлены как суммы 200 + 90 + 6 и 70 + 3.

Как видим, в первой косой полосе стоят единицы, во второй — десятки, в третьей — сотни и т.д. При сложении они дают в ответе соответственно число единиц, десятков, сотен и т.д. Дальнейшее очевидно:


Иначе говоря, в соответствии с законами арифметики произведение чисел 296 и 73 вычисляется так:


296 x 73 = (200 + 90 + 6) x (70 + 3) = 14 000 + 6300 + 420 + 600 + 270 + 18 = 10 000 + (4000 + 6000) + (300 + 400 + 600 + 200) + (70 + 20 + 10) + 8 = 21 608.

Отрицательные и положительные числа,6 класс

Положительные количества в китайской математике называли «чен», отрицательные – «фу»; их изображали разными цветами: «чен» - красным, «фу» - черным. Такой способ изображения использовался в Китае до середины XII столетия, пока Ли Е не предложил более удобное обозначение отрицательных чисел – цифры, которые изображали отрицательные числа, перечеркивали черточкой наискось справа налево. Индийские ученые, стараясь найти и в жизни образцы такого вычитания, пришли к толкованию его с точки зрения торговых расчетов.

Если купец имеет 5000 р. и закупает товара на 3000 р., у него остается 5000 - 3000 = 2000, р. Если же он имеет 3000 р., а закупает на 5000 р., то он остается в долгу на 2000 р. В соответствии с этим считали, что здесь совершается вычитание 3000 - 5000, результатом же является число 2000 с точкой наверху, означающее «две тысячи долга».

Толкование это носило искусственный характер, купец никогда не находил сумму долга вычитанием 3000 - 5000, а всегда выполнял вычитание 5000 - 3000. Кроме того, на этой основе можно было с натяжкой объяснить лишь правила сложения и вычитания «чисел с точками», но никак нельзя было объяснить правила умножения или деления.

В V-VI столетиях отрицательные числа появляются и очень широко распространяются в индийской математике. В Индии отрицательные числа систематически использовали в основном так, как это мы делаем сейчас. Индийские математики используют отрицательные числа с VII в. н. э.: Брахмагупта сформулировал правила арифметических действий с ними. В его произведении мы читаем: « имущество и имущество есть имущество, сумма двух долгов есть долг; сумма имущества и нуля есть имущество; сумма двух нулей есть нуль… Долг, который отнимают от нуля, становится имуществом, а имущество – долгом. Если нужно отнять имущество от долга, а долг от имущества, то берут их сумму».

Индийцы называли положительные числа «дхана» или «сва» (имущество), а отрицательные – «рина» или «кшайя» (долг). Впрочем, и в Индии с пониманием и принятием отрицательных чисел были проблемы.

Данные исторические сведения будет целесообразно рассмотреть на этапе изучения нового материала, перед введение правил сложения и вычитания рациональных чисел.

Рубрика «Интересное об известном»

Кто такой Литр? (5-6 класс)

  • Каждый из нас знает, что литр - это мера объёма, равная объёму килограмма воды при температуре 4С.
  • Однако мало кому известно, что термин "литр" введён в честь француза Клода - Эмиля - Жана Батиста Литра. Он жил в 18 в. и занимался производством винных бутылок.
  • Считается, что Литр первый из тех, кто стал производить лабораторную посуду, в частности, он придумал градуированные стеклянные цилиндры. Известно, что его родители также занимались производством винных бутылок.
  • В 1763 г. на 47-м году жизни Литр предложил измерять объёмы жидкости с помощью единицы, которую впоследствии назвали литром.

Метод ложных положений при решении уравнений, 7 класс

К алгебраическим относятся задачи на «аха» («аха» – куча): x+ax+bx+…+cx=p. Решение уравнения x=p/(1+a+b+…+c). Из-за сложности суммирования и деления дробей, египтяне использовали правило ложного положения.

Для решения уравнения x + x / 4 =15 брали «с потолка» заведомо неправильное, ложное значение x = 4 . При подстановке в левой части получается 5, а надо 15. Значит, надо изменить пропорционально x: его надо умножить на 15/5.

Квадратные уравнения в Древнем Вавилоне, 8 -9 классы

Как составлял и решал Диофант квадратные уравнения ,

В “Арифметике” Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

“Найти два числа, зная, что их сумма равна 20, а произведение — 96”.

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е. 10 + х, другое же меньше, т. е. 10 — х. Разность между ними 2х. Отсюда уравнение

Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = —2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).




Предварительный просмотр:

По теме: методические разработки, презентации и конспекты

Методические особенности изучения неравенств в школьном курсе математики

Предлагаю Вашему вниманию материал о методических особенностях изучения неравенств в школьном курсе математики....

МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ИЗУЧЕНИЯ ГЕОМЕТРИЧЕСКОГО МАТЕРИАЛА НА УРОКАХ МАТЕМАТИКИ В 5-6- КЛАССАХ

Богатым арсеналом эффективных средств для всестороннего развития мышления учащихся располагает курс школьной геометрии. Особая роль при развитии учащихся средствами геометрии при этом отводится изучен...

Методические особенности изучения раздела «Основы алгоритмизации» в основной школе в контексте ФГОС

В нашем мире современному человеку все чаще приходится сталкиваться с большими объемами информации. И от того насколько эффективно он с ней работает, будет зависеть его жизненный и профессиональный ус...

Методические особенности изучения темы "Треугольники и четырёхугольники"

Методические особенности изучения темы "Треугольники и четырёхугольники"  в 5 классе к учебнику "Математика 5" Г.В.Дорофеев, И.Ф.Шарыгин, С.Б.Суворова и др....

Методические особенности изучения словосочетания как единицы синтаксиса

Изучение синтаксиса требует тщательного анализа единиц языка, причём их многообразие становится доступным обучающимся, если они проявляют аналитические способности – способность рассуждать, сопо...

Методические особенности изучения темы "Треугольники и четырёхугольники"

Методические особенности изучения темы "Треугольники и четырехугольники" в 5 классе к учебнику "Математика 5"  Г.В.Дорофеев, И.Ф.Шарыгин, С.Б.Суворова и др....