Презентация к уроку по теме "Вероятность" (подборка задач)
презентация к уроку по математике (9 класс)

Мурадян Валентина Фёдоровна

В презентации подобраны обучающие задачи по курсу "Вероятность и статистика".

 

Скачать:

ВложениеРазмер
Файл veroyatnost_podborka_zadach.pptx350.65 КБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Вероятность (подборка задач) Учитель математики Мурадян Валентина Фёдоровна

Слайд 2

Как решать задачи на вероятность ? Вероятность — очень лёгкая тема, если концентрироваться на смысле задач, а не на формулах. Найти вероятность того что — не просто. И как решать задачи на вероятность?. Во-первых, что такое вероятность? Это шанс, что какое-то событие произойдёт. Если мы говорим, что вероятность некоторого события 50%, что это значит? Что оно либо произойдет, либо не произойдет — одно из двух. Таким образом , подсчитать значение вероятности очень просто — нужно взять количество подходящих нам вариантов и разделить на количество всех возможных вариантов. Например, шанс получить решку при подбрасывании монеты это ½. Как мы получаем ½? Всего у нас два возможных варианта (орёл и решка), из них нам подходит один (решка), так мы и получаем вероятность ½. Вероятность подходящих событий + вероятность неподходящих событий = 1. Теперь мы точно понимаем, как считать вероятность отдельного события .

Слайд 3

Вероятность нескольких событий Подсчитываем вероятность каждого события в отдельности, затем между дробями ставим знаки: 1. Если нужно первое И второе событие, то умножаем. 2. Если нужно первое ИЛИ второе событие, то складываем. В задачах на вероятность обычно происходят как минимум два события , и надо посчитать вероятность с учетом каждого из них.

Слайд 4

Среди натуральных чисел от 23 до 37 случайно выбирают одно число. Найдите вероятность того, что оно не делится на 5. Решение: Вероятность, это отношение благоприятных вариантов к общему их количеству. Всего в этом промежутке 15 чисел. Из них на 5 делится всего 3, значит не делится 12. Вероятность тогда: Ответ: 0,8. Задача 1.

Слайд 5

Задача 2. Для дежурства в столовой случайно выбирают двух учащихся класса. Какова вероятность того, что дежурить будут два мальчика, если в классе обучается 7 мальчиков и 8 девочек? Решение: Вероятность, это отношение благоприятных вариантов к общему их количеству. В классе 7 мальчиков, это благоприятные варианты. А всего 15 учеников. Вероятность что первый дежурный мальчик: Р=7/15 Вероятность что второй дежурный мальчик: Р= 6/14 Раз оба должны быть мальчики, вероятности перемножим: Р = 7/15 * 6/14 = 2/10 = 0,2 Ответ: 0,2.

Слайд 6

Задача 3. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест. Решение: Пассажиру В. удобны 30 мест (12 + 18 = 30), а всего в самолете 300 мест. Поэтому вероятность того, что пассажиру В. достанется удобное место равна 30/300, т. е. 0,1.

Слайд 7

Задача 4. В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам. Решение: Из 25 билетов 15 не содержат вопроса по неравенствам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам, равна 15/25, т. е. 0,6.

Слайд 8

Задача 5 . В сборнике билетов по химии всего 35 билетов, в 7 из них встречается вопрос по кислотам. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам. Решение: Из 35 билетов 28 не содержат вопроса по кислотам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам, равна 28/35, т. е. 0,8.

Слайд 9

Задача 6. В среднем из 500 садовых насосов, поступивших в продажу, 2 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает. Решение: Если из 500 насосов 2 подтекают, то 498 не подтекают. Следовательно, вероятность выбора хорошего насоса — 498/500, т. е. 0,996.

Слайд 10

Задача 7. Вероятность того, что новый пылесос в течение года поступит в гарантийный ремонт, равна 0,065. В некотором городе из 1000 проданных пылесосов в течение года в гарантийную мастерскую поступило 70 штук. На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе? Решение: Частота события «гарантийный ремонт» равна 70/1000, т. е. 0,07. Она отличается от предсказанной вероятности на 0,005 (0,07 – 0,065 = 0,005).

Слайд 11

Задача 8. В чемпионате по гимнастике участвуют 50 спортсменок: 18 из России, 14 из Украины, остальные — из Белоруссии. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Белоруссии. Решение: Всего участниц на чемпионате 50, а спортсменок из Белоруссии — 18 (50 – 18 – 14 = 18). Вероятность того, что первой будет выступать спортсменка из Белоруссии — 18 из 50, т. е. 18/50, или 0,36.

Слайд 12

Задача 9. Научная конференция проводится в 5 дней. Всего запланировано 80 докладов — первые три дня по 12 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции? Решение: За первые три дня будут прочитаны 36 докладов (12 ∙ 3 = 36), на последние два дня планируется 44 доклада. Поэтому на последний день запланировано 22 докладов (44 : 2 = 22). Значит, вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 22/80, т. е. 0,275.

Слайд 13

Задача 10 . Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шахматистов, среди которых 14 участников из России, в том числе Егор Косов. Найдите вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России? Решение: В первом туре Егор Косов может сыграть с 25 шахматистами (26 – 1 = 25), из которых 13 ― из России. Значит, вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России, равна 13/25, или 0,52.

Слайд 14

Задача 11. В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4. Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе? Решение: Вероятность того, что команда России окажется во второй группе, равна отношению количества карточек с номером 2, к общему числу карточек, т. е. 4/16, или 0,25.

Слайд 15

Задача 12. В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин? Решение: Выбирают двоих туристов из пяти. Следовательно, вероятность быть выбранным равна 2/5, т. е. 0,4.

Слайд 16

Задача 13. В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта. Решение: На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что турист полетит первым рейсом вертолёта, равна 6/30, или 0,2.

Слайд 17

Задача 14. Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три? Решение: Натуральных чисел от 10 до 19 десять, из них на 3 делятся три числа: 12, 15 и 18. Следовательно, искомая вероятность равна 3/10, т. е. 0,3.

Слайд 18

Вероятность нескольких событий Задача 1. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Стартер» по очереди играет с командами «Ротор», «Мотор» и « Стратор ». Найдите вероятность того, что «Стартер» будет начинать только вторую игру. Решение: Тип вопроса: совмещение событий. Нас устроит следующий вариант: «Статор» не начинает первую игру, начинает вторую игру, не начинает третью игру. Вероятность такого развития событий равна произведению вероятностей каждого из этих событий. Вероятность каждого из них равна 0,5, следовательно: 0,5 · 0,5 · 0,5 = 0,125.

Слайд 19

Вероятность нескольких событий Игра №1 Игра №2 Вероятность данного варианта 3 1 0,4 · 0,2 = 0,08 1 3 0,2 · 0,4 = 0,08 3 3 0,4 · 0,4 = 0,16 Задача 2. Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей ― 1 очко, если проигрывает ― 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4. Решение: Тип вопроса: совмещение событий. Задачу выполняют несколько вариантов: Вероятность происхождения какого-либо их этих 3-х вариантов равна сумме вероятностей каждого из вариантов: 0,08 + 0,08 + 0,16 = 0,32.

Слайд 20

Вероятность нескольких событий Задача 3. В классе учится 21 человек. Среди них две подруги: Аня и Нина. Класс случайным образом делят на 7 групп, по 3 человека в каждой. Найти вероятность того что Аня и Нина окажутся в одной группе. Решение: Тип вопроса: уменьшение групп. Вероятность попадания Ани в одну из групп равна 1. Вероятность попадания Нины в ту же группу равна 2 из 20 (2 оставшихся места в группе, а человек осталось 20). 2/20 = 1/10 = 0,1.

Слайд 21

Задача 4. В кармане у Пети было 4 монеты по рублю и 2 монеты по два рубля. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что обе двухрублёвые монеты лежат в одном кармане. Решение: Способ №1 Тип задачи: уменьшение групп. Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая однорублевая монета попадет в один из карманов (групп) = 1. Вероятность, что две двухрублевые монеты попадут в этот же карман = количество оставшихся мест в этом кармане/на количество оставшихся мест в обоих карманах = 2/5 = 0,4. Вероятность нескольких событий

Слайд 22

Способ №2 Тип вопроса: совмещение событий. Задачу выполняют в несколько вариантов: Если Петя переложил в другой карман три из четырех рублевых монет (а двухрублевые не перекладывал), или если переложил в другой карман обе двухрублевые монеты и одну рублевую одним из трех способов: 1, 2, 2; 2, 1, 2; 2, 2, 1. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»): Карман 1 Карман 2 Вероятность данного варианта 2; 2; 1 1; 1; 1 4/6*3/5*2/4=1/5 1; 1; 1 1; 2; 2 4/6*2/5*1/4=1/15 1; 1; 1 2;1;2 2/6*4/5*1/4=1/15 1; 1; 1 2; 2; 1 2/6*1/5*4/4=1/15 Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: 1/5+1/15+1/15+1/15= 6/15 = 0,4

Слайд 23

Задача 5 . В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах. Решение: Тип задачи: уменьшение групп. Способ №1 Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая двухрублевая монета попадет в один из карманов (групп) = 1. Вероятность, что вторая монета попадет в другой карман = количество оставшихся мест в другом/ на количество оставшихся мест в обоих карманах равна 3/5 = 0,6. Вероятность нескольких событий

Слайд 24

Способ №2 Тип вопроса: совмещение событий. Задачу выполняют несколько вариантов: Чтобы пятирублевые монеты оказались в разных карманах, Петя должен взять из кармана одну пятирублевую и две десятирублевые монеты. Это можно сделать тремя способами: 5, 10, 10; 10, 5, 10 или 10, 10, 5. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»): Карман 1 Карман 2 Вероятность данного варианта 5; 10 ; 10 5; 10 ; 10 2/6*4/5*3/4=1/5 5; 10 ; 10 10 ; 5 ; 10 4/6*2/5*3/4=1/5 5; 10 ; 10 10; 10; 5 4/6*3/5*2/4=1/5 Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: 1/5+1/5+1/5= 3/5 = 0,6.

Слайд 25

Задача 6. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно два раза. Решение: Тип вопроса: нахождение желаемого и действительного \ совмещение событий Нас устраивают три варианта: Орёл ― решка ― орёл; Орёл ― орёл ― решка; Решка ― орёл ― орёл; Вероятность каждого случая ― 1/2, а каждого варианта ― 1/8 (1/2 ∙ 1/2 ∙ 1/2 = 1/8) Нас устроит либо первый, либо второй, либо третий вариант. Следовательно, складываем их вероятности и получаем 3/8 (1/8 + 1/8 + 1/8 = 3/8), т. е. 0,375. Вероятность нескольких событий

Слайд 26

Задача 7. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,5. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,34. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза. Решение: Тип вопроса: совмещение событий. В любом случае А. будет играть как белыми, так и черными, поэтому нас устроит вариант, когда гроссмейстер А. выиграет, играя белыми (вероятность ― 0,5), а также играя чёрными (вероятность ― 0,34). Поэтому надо перемножить вероятности этих двух событий: 0,5 ∙ 0,34 = 0,17. Вероятность нескольких событий

Слайд 27

Задача 8. Вероятность того, что батарейка бракованная, равна 0,02. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными. Решение: Тип вопроса: совмещение событий. Вероятность того, что батарейка исправна, равна 0,98. Покупателю надо, чтобы и первая, и вторая батарейка были исправны: 0,98 · 0,98 = 0,9604. Вероятность нескольких событий

Слайд 28

Задача 9. На рок-фестивале выступают группы ― по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из США будет выступать после группы из Канады и после группы из Китая? Результат округлите до сотых. Решение: Тип вопроса: совмещение событий. Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (КИТ — Китай, КАН = Канада): … США, КАН, КИТ … … США, КИТ, КАН … … КИТ, США, КАН … … КАН, США, КИТ … … КАН, КИТ, США … … КИТ, КАН, США … США находится после Китая и Канады в двух последних случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна: 2/6 = 1/3 ≈ 0,33. Вероятность нескольких событий

Слайд 29

Дополняющая вероятность Задача 1. Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,97. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,05. Найдите вероятность того, что случайно выбранная батарейка будет забракована. Решение: Существуют 2 варианта, которые нам подходят: Вариант А: батарейка забракована, она неисправна; Вариант Б: батарейка забракована, она исправна. Вероятность варианта А: 0,02 ∙ 0,97 = 0,0194; Вероятность варианта Б: 0,05 ∙ 0,98 = 0,049; Нас устроит либо первый, либо второй вариант: 0,0194 + 0,049 = 0,0684.

Слайд 30

Задача 2. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 60% этих стекол, вторая — 40%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 5%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным. Решение: Вероятность того, что стекло куплено на первой фабрике и оно бракованное: 0,6 · 0,03 = 0,018. Вероятность того, что стекло куплено на второй фабрике и оно бракованное: 0,4 · 0,05 = 0,02. Вероятность того, что случайно купленное в магазине стекло окажется бракованным, равна 0,018 + 0,02 = 0,038 . Дополняющая вероятность

Слайд 31

Задача 3. На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Результат округлите до тысячных. Решение: Предположим, у нас х тарелок изначально (ведь мы постоянно имеем дело с процентами, поэтому нам ничего не мешает оперировать конкретными величинами). Тогда 0,1х — дефектные тарелки, а 0,9х — нормальные, которые поступят в магазин сразу. Из дефектных убирается 80%, то есть 0,08х, и остаётся 0,02х, которые тоже пойдут в магазин. Таким образом, общее количество тарелок на полках в магазине окажется: 0,9х + 0,02х = 0,92х. Из них нормальными будет 0,9х. Соответственно, по формуле вероятность будет 0,9х/0,92х ≈ 0,978 . Дополняющая вероятность

Слайд 32

Задача 4. По отзывам покупателей Игорь Игоревич оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,91. Вероятность того, что этот товар доставят из магазина Б, равна 0,89. Игорь Игоревич заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар. Решение. Вероятность того, что первый магазин не доставит товар, равна 1 − 0,91 = 0,09. Вероятность того, что второй магазин не доставит товар, равна 1 − 0,89 = 0,11. Вероятность происхождения двух этих событий одновременно равна произведению вероятностей каждого из них: 0,09 · 0,11 = 0,0099. Дополняющая вероятность

Слайд 33

Задача 5. При изготовлении подшипников диаметром 70 мм вероятность того, что диаметр будет отличаться от заданного меньше чем на 0,01 мм, равна 0,961. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 69,99 мм или больше чем 70,01 мм. Решение: Нам дана вероятность события, при котором диаметр будет в пределах между 69,99 мм и 70,01 мм, и она равна 0,961. Вероятность всех остальных вариантов мы можем найти по принципу дополняющей вероятности: 1 − 0,961 = 0,039. Дополняющая вероятность

Слайд 34

Задача 6. Вероятность того, что на тесте по истории учащийся верно решит больше 9 задач, равна 0,68. Вероятность того, что верно решит больше 8 задач, равна 0,78. Найдите вероятность того, что верно решит ровно 9 задач. Решение: Вероятность того, что Т. верно решит более 8 задач, включает в себя вероятность решения ровно 9 задач. При этом, события, при которых О. решит больше 9 задач, нам не подходят. Следовательно, отняв от вероятности решения более 9 задач вероятность решения более 8 задач, мы и найдём вероятность решения только 9 задач: 0,78 – 0,68 = 0,1. Дополняющая вероятность

Слайд 35

Задача 7. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 21 пассажира, равна 0,88. Вероятность того, что окажется меньше 12 пассажиров, равна 0,66. Найдите вероятность того, что число пассажиров будет от 12 до 20. Решение. Вероятность того, что в автобусе окажется меньше 21 пассажира, включает в себя вероятность, что в нём окажутся от 12 до 20 пассажиров. При этом события, при которых пассажиров будет меньше 12, нам не подходят. Следовательно, отняв от первой вероятности (менее 21) вторую вероятность (менее 12), мы и найдём вероятность того, что пассажиров будет от 12 до 20 : 0,88 – 0,66 = 0,22 . Дополняющая вероятность

Слайд 36

Задача 8. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,9 погода завтра будет такой же, как и сегодня. 10 апреля погода в Волшебной стране хорошая. Найдите вероятность того, что 13 апреля в Волшебной стране будет отличная погода. Решение: Задачу выполняют несколько вариантов («Х» — хорошая погода, «О» — отличная погода): Дополняющая вероятность 11 апреля 12 апреля 13 апреля Вероятность данного варианта Х-0,9 Х-0,9 О-0,1 0,9*0,9*0,1=0,081 Х-0,9 О-0,1 О-0,9 0,9*0,1*0,9=0,081 О-0,1 О-0,9 О-0,9 0,1*0,9*0,9=0,081 О-0,1 Х-0,1 О-0,1 0,1*0,1*0,1=0,001 Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: 0,081 + 0,081 + 0,081 + 0,001 = 0,244 .

Слайд 37

Задача 9. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода. Решение: Задачу выполняют несколько вариантов («Х» ― хорошая погода, «О» ― отличная погода): Дополняющая вероятность 4 июля 5 июля 6 июля Вероятность данного варианта Х-0,8 Х-0,8 О-0,2 0,8*0,8*0,2=0,128 Х-0,8 О-0,2 О-0,8 0,8*0,2*0,8=0,128 О-0,2 О-0,8 О-0,8 0,2*0,8*0,8=0,128 О-0,2 Х-0,2 О-0,2 0,2*0,2*0,2=0,008 Вероятность происхождения какого-либо их этих 4 ― х вариантов равна сумме вероятностей каждого из вариантов: 0,128 + 0,128 + 0,128 + 0,008 = 0,392 .


По теме: методические разработки, презентации и конспекты

презентация к уроку по теме: "Решение задач на движение"

Данную презентацию можно использовать в качестве итогового повторения при подготовке к ГИА...

Презентация к уроку: "Графический метод решения задач" 11 класс

Презентация к уроку: "Графический метод решения задач" 11 класс....

Презентация к уроку по теме "Решение задач с помочью уравнений"

Презентация к уроку алгебры в 7 классе при изучении темы "Решение задач с помощью уравнений"...

Презентация к уроку по теме "Решение задач на нахождение части от целого и целого по его части". Математика. 5 класс.

Презентация к уроку по теме "Решение задач на нахождение части от целого и целого по его части". Математика. 5 класс....

Презентация к уроку по теме "Решение задач с применением СЛУ"

Презентация к уроку по теме "Решение задач с применением СЛУ"...

презентация к уроку по теме «Решение задач на применение уравнения состояния идеального газа и газовых законов»

«Решение задач на применение уравнения состояния идеального газа и газовых законов»...

Презентация к уроку в 5 классе "Задачи на дроби"

Презентация к уроку в 5 классе "Задачи на дроби"...