Диофант. Задача Диофанта.
методическая разработка по математике (6 класс) на тему
Диофант. Задача Диофанта.
Скачать:
Предварительный просмотр:
Подписи к слайдам:
Диофант представляет одну из наиболее трудных загадок в истории науки. Нам не известно ни время, когда он жил, ни предшественники, которые работали бы в той же области. Труды его подобны сверкающему огню среди непроницаемой тьмы.
Промежуток времени, когда мог жить Диофант, составляют полтысячелетия! Нижняя грань определяется без труда: в своей книге о многоугольных числах Диофант неоднократно упоминает математика Гипсикла Александрийского который жил в середине 2-ого в. до н.э.
С другой стороны, в комментариях Теона Александрийского к «Альмагесту» знаменитого астронома Птолемея помещен отрывок из сочинения Диофанта. Теон жил в середине 4-ого в.н.э. Этим определяется верхняя грань этого промежутка. Итак, 500 лет!
Зато место жительства Диофанта хорошо известно – Александрия, центр научной мысли и эллинистического мира. Наиболее загадочным представляется творчество Диофанта.
До наших дней дошли два произведения Диофанта, оба не полностью. Это «Арифметика» (шесть книг из тринадцати) и отрывки из трактата «О многоугольных числах». Но о самом авторе не известно почти ничего. Его «Арифметика» стала поворотным пунктом в развитии алгебры и теории чисел. Именно здесь произошёл окончательный отказ от геометрической алгебры. В начале своего труда Диофант поместил краткое введение, ставшее первым изложением основ алгебры. В нём строится поле рациональных чисел и вводится буквенная символика. Там же формулируются правила действий с многочленами и уравнениями. Труды Диофанта имели фундаментальное значение для развития алгебры и теории чисел. С именем этого учёного связано появление и развитие алгебраической геометрии, проблемами которой впоследствии занимались Леонард Эйлер, Карл Якоби и другие авторы.
Чебышев Гаусс Ферма Эйлер Лагранж
«Арифметика» Диофанта – это сборник задач (их всего 189), каждая из которых снабжена решением (или несколькими способами решения) и необходимыми пояснениями. Поэтому, с первого взгляда, кажется, что она не является теоретическим произведением. Однако, при внимательном чтении видно, что задачи тщательно подобраны и служат для иллюстрации вполне определенных, строго продуманных методов. Как это было принято в древности, методы не формулируются в общем виде, а повторяются для решения однотипных задач.
Главная проблематика «Арифметики» – это нахождение положительных рациональных решений неопределенных уравнений. Рациональные числа трактуются Диофантом так же, как и натуральные, что не типично для античных математиков. Сначала Диофант исследует системы уравнений второго порядка от двух неизвестных. Он указывает метод нахождения других решений, если одно уже известно. Затем аналогичные методы он применяет к уравнениям высших степеней.
В X веке «Арифметика» была переведена на арабский язык, после чего математики стран ислама (Абу Камил и другие) продолжили некоторые исследования Диофанта. В Европе интерес к «Арифметике» возрос после того, как Рафаэль Бомбелли обнаружил это сочинение в Ватиканской библиотеке и опубликовал 143 задачи из его в своей «Алгебре» (1572 года). В 1621 году появился классический, подробно прокомментированный латинский перевод «Арифметики» , выполненный Баше де Мезириаком. Методы Диофанта оказали огромное влияние на Франсуа Виета и Пьера Ферма, впрочем, в Новое время неопределенные уравнения обычно решаются в целых числах, а не в рациональных, как это делал Диофант.
Известны и другие сочинения Диофанта. Трактат « О многоугольных числах» сохранился не полностью. В сохранившейся части методами геометрической алгебры выводится ряд вспомогательных теорем. Из сочинений Диофанта «Об измерении поверхностей» и «Об умножении» также сохранились лишь отрывки. Книга Диофанта «Поризмы» известна только по нескольким теоремам, используемым в Арифметике.
В Палатинской антологии содержится эпиграмма–задача, из которой можно сделать вывод, что Диофант прожил 84 года: Здесь погребен Диофант, и камень могильный При счете расскажет нам, Сколь долог был его век. Велением бога он мальчиком был шестую часть своей жизни; В двенадцатой части затем прошла его светлая юность. Седьмую часть жизни прибавим – перед нами очаг Гименея. Пять лет протекли; и прислал Гименей ему сына. Но горе ребенку! Едва половину он прожил Тех лет, что отец, как скончался несчастный. Четыре года страдал Диофант от утраты такой тяжелой И умер, прожив для науки. Скажи мне, Скольких лет достигнув, смерть воспринял Диофант?
Диофантовы уравнения Диофантовыми уравнениями называют алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами , для которых надо найти целые или рациональные решения. При этом число неизвестных в уравнениях должно быть не менее двух (если не ограничиваться только целыми числами). Диофантовы уравнения имеют, как правило, много решений , поэтому их называют неопределенными уравнениями. Это ,например, уравнения: 3х+5у=7 ; х ² +у ² = z² ; 3х ³ +4у ³ = 5 z³
К диофантовым уравнениям приводят задачи, по смыслу которых неизвестные значения величин могут быть только целыми числами.
Задача № 1 В клетке сидят кролики и фазаны, всего у них 18 ног. Узнать, сколько в клетке тех и других. Решение. Составляется уравнение с двумя неизвестными переменными, в котором х – число кроликов. у – число фазанов: 4х + 2у = 18 , или 2х + у = 9 . Выразим у через х: у = 9 – 2х . Далее воспользуемся методом перебора: х 1 2 3 4 у 7 5 3 1 Таким образом, задача имеет четыре решения. Ответ: (1; 7), (2; 5), (3; 3), (4; 1).
Задача № 2 Подданные привезли в дар шаху 300 драгоценных камней: в маленьких шкатулках по 15 штук в каждой и в больших – по 40 штук. Сколько было тех и других шкатулок, если известно, что маленьких было меньше, чем больших ? Решение: Обозначим за Х количество маленьких шкатулок, а за Y – количество больших. Причем X < Y . Получаем диофантово уравнение: Сокращаем на 5 Выразим переменную х через у
Чтобы значение дроби было целым числом , надо, чтобы 2 y было кратно 3, т.е.: Выразим переменную у и выделим целую часть: Потребуем, чтобы z было кратно 2: «Спуск» окончен. Дробей больше нет. Теперь Выразим переменные x и y через u :
u 0 2,5 Составим и решим систему неравенств: Выпишем целые решения: 1; 2; Теперь найдем значения x и y при u =1; 2; Не подходит, т.к. x должен быть меньше y ! ОТВЕТ: 4 маленькие шкатулки; 6 больших шкатулок.
z 0 ,5 5,4 Задача № 3 z = 1, 2, 3, 4, 5 Ответ: 5 способов Можно ли двухрублевыми и пятирублевыми монетами набрать сумму в 51 рубль? Если можно, то сколько существует способов?
Задача № 4 Можно ли разложить две сотни яиц в коробки по 10 и 12 штук? Если можно, то найдите все способы? 0 5,4 z Ответ: х 1 = 14, у 1 = 5; х 2 = 8, у 2 = 10; х 3 = 2, у 3 = 15.
Задача № 5 У осьминога 8 ног, а у морской звезды 5. Сколько в аквариуме тех и других, если всего у них 39 ног? u = 0 Ответ: 3; 3.
Задача № 6 Представьте число 257 в виде суммы двух чисел, а) одно из которых кратно 3, а другое – 4; б) одно из которых кратно 5, а другое – 8. а) б) Ответ: 249 и 8. Ответ: 225 и 32.
Предварительный просмотр:
Язык алгебры. Язык алгебры – уравнения. «Чтобы решить вопрос, относящийся к числам или отвлеченным отношениям величин, нужно лишь перевести задачу с родного языка на язык алгебраический», - писал великий И. Ньютон в своем учебнике алгебры, который называется «Всеобщая арифметика». Под алгебраическим языком понимают язык уравнений и неравенств. Большинство текстовых задач решается именно этим способом. Посмотрим на примере, как выполняется такой перевод с родного языка на алгебраический.
Жизнь Диофанта.В III—IV веках нашей эры жил в городе Александрии знаменитый греческий математик Диофант. До нас дошли шесть из тринадцати книг «Арифметики», написанных Диофантом. История сохранила нам мало черт биографии замечательного древнего математика Диофанта. Все, что известно о нем, почерпнуто из надписи на его гробнице - надписи, составленной в форме математической задачи. Эта надпись дает возможность определить продолжительность жизни математика, которого позднее назвали «отцом греческой алгебры». Надпись эта в переводе, подражающем древним стихам, такова:
На родном языке: |
|
Путник! Здесь прах погребен Диофанта. | x |
| |
| |
Седьмую в бездетном браке | |
Прошло пятилетие; | 5 |
Коему рок половину лишь | |
И в печали глубокой | 4 |
| |
Уравнение: |
Решив уравнение и найдя, что х=84, узнаем следующие черты биографии Диофанта; он женился в возрасте 21года, стал отцом на 38 году, потерял сына на 80 году и умер достигнув возраста 84 лет. Но все-таки попробуйте проверить сами.
Решение уравнений – зачастую дело нетрудное; составление уравнений по данным задачи затрудняет больше. Искусство составлять уравнения действительно сводится к умению переводить «с родного языка на алгебраический.
По теме: методические разработки, презентации и конспекты
Сборник задач по прикладной математике (задачи физического содержания) 5 класс
Предлагаемый «Сборник задач по прикладной математике. (Физика)» содержит задачи и примеры по темам, которые предусмотрены в школьном курсе математики, применим как для учителя, так и для ученика....
Задачи-оценки и задачи на моделирование ситуации
Здесь представлено решение нескольких задач на моделирование и задач-оценок повышенного уровня сложности, которые рассматриваются, как правило, в конце изучаемого раздела....
Проектная работа Методика подготовки учащихся к решению задач по темам «Задачи на движение» и «Задачи на смеси и сплавы», включенных в ЕГЭ по математике.
Доминирующей идеей федерального компонента государственного образовательного стандарта по математике является интенсивное развитие логического мышления, пространственного воображения, алг...
Статья: Диофант. Диофантовы уравнения на занятиях математики в техникуме
Одной из проблем образования на современном этапе является решение уравнений в целых и рациональных числах т.е. «Диофантовых уравнений», они стали одним из источников ...
«Составление физических задач. Основные требования к составлению задач. Общие требования при решении физических задач»
Решение задач по физике – необходимый элемент учебной работы. Задачи дают материал для упражнений, требующих применения физических закономерностей к явлениям, протекающим в тех или иных конкретн...
Предлагаю вашему вниманию образцы карточек к зачету по геометрии в 8 классе, а также набор задач к зачету. Учитель может по своему усмотрению либо добавить в карточки задачи, либо заменить уже имеющиеся задачи на другие.
ЗачётГлавная задача зачётов – развитие самостоятельной деятельности учащихся в усвоении ими курса математики. Другими задачами зачёта являются:формирование умений учиться;выявление пробелов в зн...
Методическая разработка занятия проведенного в рамках внеурочной деятельности: «ОГЭ по математике: текстовые задачи» по теме «Решение текстовых задач. Задачи на движение»
Тип занятия :обобщения и систематизации знанийЦели:1) Формирование предметных результатов: составления математических моделей на примерах текстовых задач на движение2) Формиров...