Рабочая программа "Математика 5-6 классы. ФГОС"
рабочая программа по математике по теме
Рабочая программа по математике составлена на основе авторской программы: Математика: программы: 5-9 классы/ А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко. М.: Вентана-Граф. Рабочая программа рассчитана на 350 часов.
Скачать:
Вложение | Размер |
---|---|
r.p._fgos_matematika_5-6_klass.docx | 48.09 КБ |
Предварительный просмотр:
Приложение №____
к основной образовательной программе основного общего образования муниципального общеобразовательного учреждения «Смирновская средняя школа»
Рабочая программа
учебного предмета
Математика
5 – 6 классы
Составитель:
Киселева Г.А.
2016 год
Рабочая программа по математике составлена на основе авторской программы: Математика: программы: 5-9 классы/ А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко. М.: Вентана-Граф. Рабочая программа рассчитана на 350 часов.
1. Планируемые результаты освоения учебного предмета
Личностные результаты.
Изучение математики в основной школе дает возможность учащимся достичь следующих результатов развития:
Личностные универсальные учебные действия:
- воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
- ответственное отношение к учению, готовность и способность учащихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
- осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;
- умение контролировать процесс и результат учебной и математической деятельности;
- критичность мышления, инициатива, находчивость, активность при решении математических задач.
Метапредметные результаты
- умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;
- умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
- умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- развитие компетентности в области использования информационно – коммуникационных технологий;
- первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;
- умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;
- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.
Предметные результаты
- осознание значения математики для повседневной жизни человека;
- представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
- развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;
- владение базовым понятийным аппаратом по основным разделам содержания;
- практически значимые математические умения и навыки, их применение к решению математических и нематематических задач, предполагающее умения:
- выполнять вычисления с натуральными числами, обыкновенными и десятичными дробями, положительными и отрицательными числами;
- решать текстовые задачи арифметическим способом и с помощью составления и решения уравнений;
- изображать фигуры на плоскости;
- использовать геометрический язык для описания предметов окружающего мира;
- измерять длины отрезков, величины углов, вычислять площади и объёмы фигур;
- распознавать и изображать равные и симметричные фигуры;
- проводить несложные практические вычисления с процентами, использовать прикидку и оценку; выполнять необходимые измерения;
- использовать буквенную символику для записи общих утверждений, формул, выражений, уравнений;
- строить на координатной плоскости точки по заданным координатам, определять координаты точек;
- читать и использовать информацию, представленную в виде таблицы, диаграммы (столбчатой или круговой), в графическом виде;
- решать простейшие комбинаторные задачи перебором возможных вариантов.
Выпускник научится в 5-6 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)
Арифметика
По окончании изучения курса учащийся научится:
• понимать особенности десятичной системы счисления;
• использовать понятия, связанные с делимостью натуральных чисел;
• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
• сравнивать и упорядочивать рациональные числа;
• выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;
• использовать понятия и умения, связанные с процентами, в ходе решения математических задач и задач из смежных предметов, выполнять не сложные практические расчёты;
• анализировать графики зависимостей между величинами (расстояние, время; температура и т. п.).
Учащийся получит возможность:
• познакомиться с позиционными системами счисления и основаниями, отличными от 10;
•углубить и развить представления о натуральных числах и свойствах делимости;
• научиться использовать приёмы, рационализирующие вычисления, приобрести навык контролировать вычисления, выбирая подходящий для ситуации способ.
Числовые и буквенные выражения. Уравнения.
По окончании изучения курса учащийся научится:
• выполнять операции с числовыми выражениями;
• выполнять преобразования буквенных выражений (раскрытие скобок, приведение подобных слагаемых);
• решать линейные уравнения, решать текстовые задачи алгебраическим методом.
Учащийся получит возможность:
• развить представления о буквенных выражениях и их преобразованиях;
• овладеть специальными приёмами решения уравнений, применять аппарат уравнений для решения как текстовых, так и практических задач.
Геометрические фигуры. Измерение геометрических величин.
По окончании изучения курса учащийся научится:
• распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы;
• строить углы, определять их градусную меру;
• распознавать и изображать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
• определять по линейным размерам развёртки фигуры, линейные размеры самой фигуры и наоборот;
•вычислять объём прямоугольного параллелепипеда и куба.
Учащийся получит возможность:
• научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
• углубить и развить представления о пространственных геометрических фигурах;
• научиться применять развёртки для выполнения практических расчетов.
Элементы статистики, вероятности. Комбинаторные задачи.
По окончании изучения курса учащийся научится:
• использовать простейшие способы представления и анализа статистических данных;
• решать комбинаторные задачи на нахождение количества объектов или комбинаций.
Учащийся получит возможность:
• приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;
• научиться некоторым специальным приёмам решения комбинаторных задач.
2. Содержание учебного предмета
Арифметика
Натуральные числа
Ряд натуральных чисел. Десятичная запись натуральных чисел. Округление натуральных чисел.
Координатный луч.
Сравнение натуральных чисел. Сложение и вычитание натуральных чисел. Свойства сложения.
Умножение и деление натуральных чисел. Свойства умножения. Деление с остатком. Степень числа с натуральным показателем.
Делители и кратные натурального числа. Наибольший общий делитель. Наименьшее общее кратное. Признаки делимости на 2, на 3, на 5, на 9, на 10.
Простые и составные числа. Разложение чисел на простые множители.
Решение текстовых задач арифметическими способами.
Дроби
Обыкновенные дроби. Основное свойство дроби. Нахождение дроби от числа. Нахождение числа по значению его дроби. Правильные и неправильные дроби. Смешанные числа.
Сравнение обыкновенных дробей и смешанных чисел. Арифметические действия с обыкновенными дробями и смешанными числами.
Десятичные дроби. Сравнение и округление десятичных дробей. Арифметические действия с десятичными дробями. Прикидки результатов вычислений. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Бесконечные периодические десятичные дроби. Десятичное приближение обыкновенной дроби
Отношение. Процентное отношение двух чисел. Деление числа в данном отношении. Масштаб.
Пропорция. Основное свойство пропорции. Прямая и обратная пропорциональные зависимости.
Проценты. Нахождение процентов от числа. Нахождение числа по его процентам.
Решение текстовых задач арифметическими способами.
Рациональные числа
Положительные, отрицательные числа и число 0.
Противоположные числа. Модуль числа.
Целые числа. Рациональные числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства сложения и умножения рациональных чисел.
Координатная прямая. Координатная плоскость.
Величины. Зависимости между величинами
Единицы измерения длины, площади, объема, массы, времени, скорости.
Примеры зависимостей между величинами. Представление зависимостей в виде формул. Вычисления по формулам.
Числовые и буквенные выражения. Уравнения
Числовые выражения. Значение числового выражения. Порядок действий в числовых выражениях. Буквенные выражения. Раскрытие скобок. Подобные слагаемые, приведение подобных слагаемых. Формулы.
Уравнения. Корень уравнения. Основные свойства уроавнений. Решение текстовых задач с помощью уравнений.
Элементы статистики, вероятности. Комбинаторные задачи
Представление данных в виде таблиц, круговых и столбчатых диаграмм, графиков.
Среднее арифметическое. Среднее значение величины.
Случайное событие. Достоверное и невозможное события. Вероятность случайного события. Решение комбинаторных задач.
Геометрические фигуры. Измерения геометрических величин.
Отрезок. Построение отрезка. Длина отрезка, ломаной. Измерение длины отрезка, построение отрезка заданной длины. Периметр многоугольника. Плоскость. Прямая. Луч.
Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.
Прямоугольник. Квадрат. Треугольник. Виды треугольников. Окружность и круг. Длина окружности. Число π.
Равенство фигур. Понятие и свойства площади. Площадь прямоугольника и квадрата. Площадь круга. Ось симметрии фигуры.
Наглядные представления о пространственных фигурах: прямоугольный параллелепипед, куб, пирамида, цилиндр, конус, шар, сфера. Примеры развёрток многогранников, цилиндра, конуса. Понятие и свойства объёма. Объём прямоугольного параллелепипеда и куба.
Взаимное расположение двух прямых. Перпендикулярные прямые. Параллельные прямые.
Осевая и центральная симметрии.
Математика в историческом развитии.
Римская система счисления. Позиционные системы счисления. Обозначение цифр в Древней Руси. Старинные меры длины. Введение метра как единицы длины. Метрическая система мер в России, в Европе. История формирования математических символов. Дроби в Вавилоне, Египте, Риме, на Руси. Открытие десятичных дробей. Мир простых чисел. Золотое сечение. Число нуль. Появление отрицательных чисел.
Л. Ф. Магницкий. П. Л. Чебышев. А. Н. Колмогоров.
3.Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы.
5 класс
№ | Название темы | Количество часов |
1 | Натуральные числа. | 20 |
2 | Сложение и вычитание натуральных чисел. | 33 |
3 | Умножение и деление натуральных чисел. | 37 |
4 | Обыкновенные дроби. | 18 |
5 | Десятичные дроби. | 48 |
6 | Повторение и систематизация учебного материала. | 19 |
Объем учебной программы: | 175 |
6 класс
№ | Название темы | Количество часов |
1 | Делимость натуральных чисел. | 17 |
2 | Обыкновенные дроби. | 38 |
3 | Отношения и пропорции. | 28 |
4 | Рациональные числа и действия с ними. | 72 |
5 | Повторение и систематизация учебного материала. | 20 |
Объем учебной программы: | 175 |
По теме: методические разработки, презентации и конспекты
Рабочая программа ИЗО 5 класс ФГОС
Рабочая программа по изобразительному искусству для 5 класса составлена на основе образовательной программы ФГОС« Изобразительное искусство и художественный труд». 1-9 кл.Автор: Б.М....
Рабочая программа для 5 класса (ФГОС)
Программа составлена с учетом новых ФГОСов для учащихся 5 классов....
рабочие программы 2-4 класс ФГОС
Рабочие программы 2-4 класс по новым ФГОС...
Рабочая программа .Обществознание 5 класс ФГОС
Рабочая программа по обществознанию в 5 классе составлена на основе авторской программы Л.Н. Боголюбова «Обществознание. Рабочие программы. Предметная линия учебников 5-9 классы» и предназ...
Рабочая программа физкультура 5 класс ФГОС
Рабочая программа 5 класс ФГОС, с УУД...
Рабочая программа физкультура 5 класс ФГОС
Рабочая программа 5 класс ФГОС, с УУД...