Приведение дробей к общему знаменателю.
презентация к уроку по математике (6 класс) на тему
Скачать:
Вложение | Размер |
---|---|
prezentatsiya_privedenie_drobey_k_obshchemu_znamenatelyu.ppt | 135.5 КБ |
Предварительный просмотр:
Подписи к слайдам:
Умножим числитель и знаменатель дроби на одно и то же число 2. Получим равную ей дробь , т. е. Говорят, что мы привели дробь к новому знаменателю 8. Дробь можно привести к любому знаменателю , кратному знаменателю данной дроби.
Число, на которое надо умножить знаменатель дроби, чтобы получить новый знаменатель, называют дополнительным множителем. При приведении дроби к новому знаменателю ее числитель и знаменатель умножают на дополнительный множитель.
Пример 1 . Приведем дробь к знаменателю 35. Решение. Число 35 кратно 7, так как 35:7 = 5. Дополнительным множителем является число 5. Умножим числитель и знаменатель данной десятичные дроби на 5, получим
Любые две дроби можно привести к одному и тому же знаменателю, или иначе к общему знаменателю. Например, Общим знаменателем дробей может быть любое общее кратное их знаменателей (например, произведение знаменателей). Обычно дроби приводят к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей данных дробей.
Пример 2. Приведем к наименьшему общему знаменателю дроби Решение. Наименьшим общим кратным чисел 4 и 6 является 12. Чтобы привести дробь к знаменателю 12, надо умножить числитель и знаменатель этой дроби на дополнительный множитель 3 (12:4 = 3). Получим
Чтобы привести дробь к знаменателю 12, надо числитель и знаменатель этой дроби умножить на дополнительный множитель 2 (12:6=2). Получим Итак
Чтобы привести дроби к наименьшему общему знаменателю, надо: 1) найти наименьшее общее кратное знаменателей этих дробей, оно и будет их наименьшим общим знаменателем; 2) разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. найти для каждой дроби дополнительный множитель; 3) умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.
В более сложных случаях наименьший общий знаменатель и дополнительные множители находят с помощью разложения на простые множители. Пример 3. Приведем дроби к наименьшему общему знаменателю. Решение. Разложим знаменатели данных дробей на простые множители: 60=2 • 2 • 3 • 5; 168 = 2 • 2 • 2 • 3 • 7. Найдем наименьший общий знаменатель: 2 • 2 • 2 • 3 • 5 • 7 = 840. Дополнительным множителем для дроби является произведение 2 • 7, т. е. тех множителей, которые надо добавить к разложению числа 60, чтобы получить разложение общего знаменателя 840.
Поэтому
Решение задач 264. Приведите дробь: 265. Выразите в минутах, а потом в шестидесятых долях часа: 266. Сколько содержится:
267. Сократите дроби а потом приведите их к знаменателю 24. 268. Можно ли привести к знаменателю 36 дроби: 272. Приведите к наименьшему общему знаменателю дроби:
Ответьте на вопросы: 1. Какое число называют дополнительным множителем? 2. Как найти дополнительный множитель? 3. Какое число может служить общим знаменателем двух дробей? 4. Как привести дроби к наименьшему общему знаменателю?
Спасибо за внимание!
По теме: методические разработки, презентации и конспекты
Приведение дробей к общему знаменателю
Презентация к уроку в 6 классе по теме: "Приведение дробей к общему знаменателю"...
Приведение дробей к общему знаменателю
Приведение дробей к общему знаменателю. Презентация к уроку математики в 6 классе....
тест "Сокращение дробей, приведение дробей к общему знаменателю"
Бланк для теста. Тест составлен на два варианта для 5 или 6 класса. В бланке в первой части в заданиях С записывается только ответ. Во второй части все с решениями....
Самостоятельная работа по теме: "Сокращение дробей. Приведение дробей к общему знаменателю" (6 класс)
Самостоятельная работа по теме: "Сокращение дробей. Приведение дробей к общему знаменателю" предназначена для учащихся 6 класса. Состоит из двух вариантов....
Повторение темы: « Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Сравнение, сложение и вычитание дробей с разными знаменателями».
Повторение темы: « Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Сравнение, сложение и вычитание дробей с разными знаменателями»....
Самостоятельная работа по теме "Сокращение дробей. Приведение дробей к общему знаменателю" 6 класс
Самостоятельная работа. 6 класс. Данная работа рассчитана на два варианта. В самостоятельную работу включены две темы: "Сокращение дробей" и "Приведение дробей к общему знаменателю"...
Самостоятельная работа "Сокращение дробей и приведение дробей к общему знаменателю"
Самостоятельная работа "Сокращение дробей и приведение дробей к общему знаменателю"...