10-ГЕОМЕТРИЯ Признак перпендикулярности плоскостей
учебно-методический материал по геометрии (10 класс) на тему
материал предназначен для организации дистанционного взаимодействия с обучащимися
Скачать:
Вложение | Размер |
---|---|
10-geo_urok_priznak_perpendikulyarnosti_ploskostey.docx | 72.51 КБ |
Предварительный просмотр:
Тема: Перпендикулярность прямых и плоскостей
Урок: Признак перпендикулярности двух плоскостей
Определение. Двугранным углом называется фигура, образованная двумя полуплоскостями, не принадлежащими одной плоскости, и их общей прямой а (а – ребро).
Рис. 1
Рассмотрим две полуплоскости α и β (рис. 1). Их общая граница – l. Указанная фигура называется двугранным углом. Две пересекающиеся плоскости образуют четыре двугранных угла с общим ребром.
2. Двугранный угол, измерение двугранного угла
Двугранный угол измеряется своим линейным углом. На общем ребре l двугранного угла выберем произвольную точку. В полуплоскостях α и β из этой точки проведем перпендикуляры a и b к прямой l и получим линейный угол двугранного угла.
Прямые a и b образуют четыре угла, равных φ, 180° - φ, φ, 180° - φ. Напомним, углом между прямыми называется наименьший из этих углов.
Определение. Углом между плоскостями называется наименьший из двугранных углов, образованных этими плоскостями. φ – угол между плоскостями α и β, если
3. Перпендикулярность плоскостей
Определение. Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 90°.
Рис. 2
На ребре l выбрана произвольная точка М (рис. 2). Проведем две перпендикулярные прямые МА = а и МВ = b к ребру l в плоскости α и в плоскости β соответственно. Получили угол АМВ. Угол АМВ – это линейный угол двугранного угла. Если угол АМВ равен 90°, то плоскости α и β называются перпендикулярными.
Анализ
Прямая b перпендикулярна прямой l по построению. Прямая b перпендикулярна прямой а, так как угол между плоскостями α и β равен 90°. Получаем, что прямая b перпендикулярна двум пересекающимся прямым а и l из плоскости α. Значит, прямая b перпендикулярна плоскости α.
Аналогично можно доказать, что прямая а перпендикулярна плоскости β. Прямая а перпендикулярна прямой l по построению. Прямая а перпендикулярна прямой b, так как угол между плоскостями α и β равен 90°. Получаем, что прямая а перпендикулярна двум пересекающимся прямым b и l из плоскости β. Значит, прямая а перпендикулярна плоскости β.
4 Признак перпендикулярности плоскостей
Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.
Дано:
Доказать:
Рис. 3
Доказательство:
Пусть плоскости α и β пересекаются по прямой АС (рис. 3). Чтобы доказать, что плоскости взаимно перпендикулярны, нужно построить линейный угол между ними и показать, что этот угол равен 90°.
Прямая АВ перпендикулярна по условию плоскости β, а значит, и прямой АС, лежащей в плоскости β.
Проведем прямую АD перпендикулярно прямой АС в плоскости β. Тогда ВАD –линейный угол двугранного угла.
Прямая АВ перпендикулярна плоскости β, а значит, и прямой АD, лежащей в плоскости β. Значит, линейный угол ВАD равен 90°. Значит, плоскости α и β перпендикулярны, что и требовалось доказать.
Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей (рис. 4).
Дано:
Доказать:
Рис. 4
Доказательство:
Прямая l перпендикулярна плоскости γ, а плоскость α проходит через прямую l. Значит, по признаку перпендикулярности плоскостей, плоскости α и γ перпендикулярны.
Прямая l перпендикулярна плоскости γ, а плоскость β проходит через прямую l. Значит, по признаку перпендикулярности плоскостей, плоскости β и γ перпендикулярны.
Следствие доказано.
Плоскость линейного угла перпендикулярна всем элементам соответствующего двугранного угла: ребру и граням.
Дано:
,
,
.
Доказать:
,
.
Рис. 5
Доказательство:
Мы имеем двугранный угол, образованный полуплоскостями α и β, которые пересекаются по прямой l (l – ребро двугранного угла) (рис. 5).
На ребре l взята точка М, к ребру l проведены два перпендикуляра МА и МВ в плоскостях α и β соответственно. Пусть пересекающиеся прямые МА и МВ образуют плоскость γ. Это и есть плоскость линейного угла.
Прямая l перпендикулярна двум пересекающимся прямым АМ и МВ из плоскости γ по построению. Значит, прямая l перпендикулярна плоскости γ.
Плоскость α проходит через прямую l, которая перпендикулярна γ, значит, .
Аналогично, плоскость β проходит через прямую l, которая перпендикулярна γ, значит, .
Итак, доказано, что плоскость линейного угла перпендикулярна всем его элементам: и ребру, и граням.
Если в одной из перпендикулярных плоскостей проведена прямая перпендикулярно к их линии пересечения, то эта прямая перпендикулярна и к другой плоскости.
Дано: ,
.
Доказать:
Рис. 6
Доказательство:
Пусть в плоскости β проведена прямая b = MB, которая перпендикулярна к линии пересечения плоскостей – l. (рис. 6)
Проведем прямую МА = а перпендикулярно прямой l. Тогда из точки М проведены два перпендикуляра к ребру l в плоскостях α и β. Получаем ∠АМВ – линейный угол двугранного угла. Так как плоскости α и β перпендикулярны, то ∠АМВ = 90°. Значит, прямые а и b перпендикулярны.
Тогда прямая b перпендикулярна двум пересекающимся прямым а и l из плоскости α. Значит, по признаку перпендикулярности прямой и плоскости, прямая b перпендикулярна плоскости α, что и требовалось доказать.
8. Напоминание определения и признака перпендикулярности прямой и плоскости
Определение. Прямая а называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой из плоскости.
Признак. Если прямая а перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к самой плоскости, а значит, к любой прямой, лежащей в этой плоскости (рис. 7).
Рис. 7
Здесь мы рассмотрели перпендикулярность двух плоскостей, доказали признак перпендикулярности плоскостей.
На следующем уроке мы начнем изучение прямоугольного параллелепипеда.
Список литературы
- И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е изд., испр. и доп. – М.: Мнемозина, 2008. – 288 с.: ил.
- Шарыгин И. Ф. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. – М.: Дрофа, 1999. – 208 с.: ил.
- Е. В. Потоскуев, Л. И. Звалич. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. – 6-е изд., стереотип. – М.: Дрофа, 2008. – 233 с.: ил.
Домашнее задание
- И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е изд., испр. и доп. – М.: Мнемозина, 2008. – 288 с.: ил.
- Задания 1, 3, 4 стр. 70.
- Докажите, что плоскость, перпендикулярная одной из двух параллельных плоскостей, перпендикулярна и другой.
- Макет прямоугольника ABCD со сторонами а и b прогнут по диагонали BD так, что плоскости BAD и BCD взаимно перпендикулярны. Найдите AC.
- Плоскости α и β взаимно перпендикулярны, Плоскости α и β пересекаются по прямой а. Расстояние от точки М до прямой а – 14 см, а от точки N до прямой а – 7 см. Найдите расстояние между основаниями перпендикуляров, опущенных с точек M и N на прямую а, если MN = 21 см.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
По теме: методические разработки, презентации и конспекты
Урок-исследование: "Признак перпендикулярности прямой и плоскости"
конспект урока...
Признак перпендикулярности прямой и плоскости. Презентация к уроку геометрии 10 класс
Презентация к уроку геометрии 10 класс по теме "Признак перпендикулярности прямой и плоскости". Доказательство признака, задачи на закрепление материала...
Признак перпендикулярности плоскостей
Презентация к уроку геометрии в 10-м классе....
Признак перпендикулярности прямой и плоскости
Признак перпендикулярности прямой и плоскости...
Признак перпендикулярности двух плоскостей
Урок геометрии в 10 классе.Автор учебника: Л.С. Атанасян.Тема урока: «Признак перпендикулярности двух плоскостей»Тип урока: Урок изучения нового материалаФормируемые результаты:Предметные: ввести поня...
«Перпендикулярность плоскостей: признак перпендикулярности двух плоскостей»
конспект урока по алгебре...
- Мне нравится (1)