Формулы радиусов вписанной и описанной окружностей. Построение некоторых правильных многоугольников.
план-конспект урока по геометрии (9 класс) на тему

Мельникова Елена Витальевна

Конспект урока по теме "Формулы радиусов вписанной и описанной окружностей. Построение некоторых правильных многоугольников"

Скачать:

ВложениеРазмер
Microsoft Office document icon konspekt_po_geom.doc54 КБ

Предварительный просмотр:

Конспект урока

          по геометрии.

Тема: «Формулы радиусов вписанной и описанной окружностей. Построение некоторых правильных многоугольников».

   

  МОУ СОШ № 27

     9 класс

Выполнила:

Мельникова Е. В.

   Воронеж

Тема: «Формулы радиусов вписанной и описанной окружностей. Построение некоторых правильных многоугольников».        

Цели:

  • Познакомить учащихся с формулами нахождения радиусов вписанной и описанной окружности.
  • Научить построению некоторых правильных многоугольников с помощью циркуля и линейки.
  • Продолжать развивать интерес к математике.

Тип урока: изучение нового материала.

Программно – дидактическое обеспечение: циркуль, линейка, разноцветные мелки.

План урока:

  1. Оргмомент.
  2. Объяснение нового материала.
  3. Закрепление изученного материала.
  4. Итог урока.

ХОД УРОКА.

  1. Оргмомент (2 мин).

Постановка целей и этапов урока, проверка отсутствующих.

  1. Объяснение нового материала (20 мин).

1. Формулы радиусов вписанной и описанной окружностей.

Заготавливается таблица на доске.

Число сторон, n

Выражение радиусов вписанной  r и описанной R окружностей через сторону а.

R

r

n

R = a / (2sin (180º/n))

r = a / (2tg(180º/n))

3

R = a / √3

r = a / 2√3

4

R = a / √2

r = a / 2

6

R = a

R = a√3 / 2

2. Построение некоторых правильных многоугольников. 

Рассмотрим способы построения некоторых правильных многоугольников с помощью циркуля и линейки. Учащиеся справа строят чертёж, а слева записывают описание построения.

1. Шестиугольник.                

  1. Строим окружность.
  2. Выбираем произвольную точку А1.
  3. Из точки А1 радиусом окружности делаем засечки.
  4. Соединяем попарно полученные точки и получаем правильный шестиугольник.

2. Треугольник.                        

  1. Построение аналогичное шестиугольнику.

2.  Но из полученных шести точек на окружности, соединять надо через одну и получаем правильный треугольник.

        3. Квадрат.                                1.  Строим окружность.

2.  Проводим через центр окружности два перпендикулярных диаметра.

3.   Соединяем полученные точки на окружности и получаем квадрат.

4. Построение из n – угольников 2n – угольников.

  1. Строим окружность.
  2. Строим квадрат.
  3. К сторонам квадрата проводим диаметрами серединные перпендикуляры.
  4. Полученные точки пересечения окружности и серединных перпендикуляров и вершины квадрата соединяем попарно.
  5. Получаем восьмиугольник.

Применяются правильные многоугольники при составлении пакетов.

3.  Закрепление изученного материала (10мин).

Задачи.

  1. В окружность радиуса R = 12 см вписан правильный n – угольник. Определите его сторону и периметр, если:

А) n = 3; Б) n = 4; B) n = 6;

Решение:

А) R = a /  √3; 12 = a / √3 => a = 12√3

     P = 3* 12√3 = 36√3;

Б) R = a / √2;   12 = a / √2 => a = 12√2

    P = 4*12√2 = 48√2;

B) R = a;  a = 12;  P = 6*12 = 72;

    P = 6*4√3 = 24√3.

2. Около окружности радиуса r = 6 описан правильный n – угольник. Определите его сторону и периметр, если:

 А) n = 3; Б) n = 4; B) n = 6;

Решение:

А) r = a / 2√3; 6 = a / 2√3  =>  a = 12√3

             P = 3*12√3 = 36;

        Б) r = a / 2;  6 = a / 2 => a = 12

            P = 4*12 = 48;

        B) r = a√3 / 2; 6 = a√3 / 2  => a = 12 / √3 = 12√3 / 3 = 4√3

            P = 6*4√3 = 24√3.

3. Для правильного n – угольника со сторонами а = 6 см найдите радиус   R и r, если:

А) n = 3; Б) n = 4; B) n = 6;

Решение:

А) R = a /  √3   => R = 6 / √3 = 6√3 / 3 = 2√3 см;

        r = a / 2√3  => r = 6 / 2√3 = 3√3 / 3  = √3 см.

Б) R = a / √2;   =>  R = 6 / √2 = 6√2 / 2 = 3√2 см;

                r = a / 2 => r = 6 / 2 = 3 см.

        B) R = a   => R = 6 см;

                r = a√3 / 2  => r  = 6√3 / 2 = 3√3 см.

4. Итог урока (2 мин).

Оценить работу класса на уроке и назвать учащихся, отличившихся на уроке.

Домашнее задание:

П. 115, 116, 117. Нарисовать эскиз паркета на альбомном листе, состоящий из правильных фигур, но допускается один многоугольник неправильный.


По теме: методические разработки, презентации и конспекты

Урок геометрии в 8 классе по теме "Вписанная и описанная окружность"

Презентация к уроку включает определения основных понятий, создание проблемной ситуации, а также развитие творческих способностей учащихся....

Рабочая программа по элективному курсу по геометрии «Решение планиметрических задач на вписанные и описанные окружности» 9 класс

Статистические данные анализа результатов проведения ЕГЭ говорят о том, что наименьший процент верных ответов традиционно дается учащимися на геометрические задачи. Задачи по планиметрии, включаемые в...

Урок геометрии в 9 классе по теме: "Формула для радиусов вписанной и описанной окружностей"

Презентация к уроку геометрии в 9 классе по теме: "Формула для радиусов вписанной и описанной окружностей"...

Правильные многоугольники. Формулы радиусов вписанной и описанной окружностей.

Урок объяснения нового материала. Вывод формул радиусов вписанной и описанной окружностей. Заполнение таблицы....

Тест по теме «Правильный многоугольник. Вписанная и описанная окружности. Формулы площади правильного многоугольника , стороны правильного многоугольника и радиуса вписанной окружности в правильный многоугольник»

Тест по теме  «Правильный многоугольник. Вписанная и описанная окружности. Формулы площади правильного многоугольника , стороны правильного многоугольника  и радиуса вписанной окр...

Презентация "Правильный многоугольник.Вписанная и описанная окружности"

Презентация к уроку "Правильный многоугольник.Вписанная и описанная окружности"...

Краткосрочный план урока геометрии для 9 класса по теме "Решение треугольников (вычисление площади треугольника через радиус вписанной или описанной окружности)".

В работе представлен краткосрочный план урока геометрии в 9 классе по теме «Решение треугольников».  В ходе урока выполняются задания на развитие функциональной грамотности обучающихс...